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ABSTRACT

IMPLEMENTATION AND EVALUATION OF AGE-AWARE DOWNLINK
SCHEDULING POLICIES IN COMMUNICATION NETWORKS

OĞUZ, TAHİR KEREM
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Elif Uysal

September 2021, 96 pages

As communication systems evolve, advanced perspectives are needed to meet the re-

quirements of emerging applications. The Age of Information metric has taken its

place in the literature to examine the information freshness demands of various ap-

plications. With the Age of Information perspective, the freshness of information

subject to communication is monitored from the destination’s point of view. Within

the scope of the thesis, a wireless network with a single transmitter (base station)

and multiple receivers was realized using Software Defined Radios (SDRs). The In-

formation Age metric was considered the main performance metric of the network.

Low-complexity, age-sensitive scheduling policies were applied and compared with

traditional scheduling policies. Then, the Query Age of Information (QAoI) metric, a

version of the Age of Information concept suitable for pull-based scenarios, was ex-

amined. We modified Age-Aware policies to perform well with respect to QAoI. We

modified the SDR testbed to study the performance of pull-based scheduling methods

experimentally.
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ÖZ

HABERLEŞME AĞLARINDAKİ BİLGİ-YAŞI FARKINDA ÇİZELGELEME
POLİÇELERİNİN GERÇEKLENMESİ VE İNCELENMESİ

OĞUZ, TAHİR KEREM
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Elif Uysal

Eylül 2021 , 96 sayfa

İletişim sistemleri geliştikçe, ortaya çıkan uygulamaların gereksinimlerini karşılamak

için gelişmiş perspektiflere ihtiyaç duyulmaktadır. "Bilgi Yaşı" metriği, uygulamala-

rın bilgi tazeliği taleplerini incelemek için literatürde kendine yer edinmiştir. Bilgi

Yaşı perspektifi ile, iletişime konu olan bilgilerin tazeliği, bilginin alıcısının gözün-

den takip edilmektedir. Tez kapsamında, Yazılım Tanımlı Telsizler (SDR’ler) kulla-

nılarak tek verici (baz istasyonu) ve birden fazla alıcı içeren bir kablosuz ağ gerçek-

leştirilmiştir. Bilgi Yaşı metriği, ağın ana performans metriği olarak kabul edilerek,

karmaşıklığı düşük, yaşa duyarlı çizelgeleme politikaları uygulanmış ve geleneksel

çizelgeleme politikalarıyla karşılaştırılmıştır. Ardından, Bilgi Yaşı kavramının, bilgi

çekme isteği odaklı senaryolara uygun bir versiyonu olan "Sorgulanan Bilgi Yaşı"

(QAoI) metriği incelenmiştir. Bilgi Yaşı merkezli çizelgeleme algoritmaları modifiye

edilerek, QAoI konseptinde iyi performans gösterebilecek çizelgeleme politikaları

elde edildi. SDR’lar ile oluşturulan test ortamı, bilgi çekme isteği odaklı çizelgeleme

politikalarının performansının deneysel olarak incelenebilmesi amacıyla geliştirildi.
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CHAPTER 1

INTRODUCTION

1.1 The Motivation of the Thesis

As communication systems evolve, new perspectives are needed to meet the demands

of various applications. The traditional approaches to emerging technologies may

be inadequate to solve the encountered problems. For example, along with the high

amount of data transfer requirements, the Internet of Things, Cyber-Physical Sys-

tems, Machine-Type communications, and Vehicular networks also require the fresh-

ness of the shared information. In this example, the freshness property gives an in-

tuition about the value of the information in terms of usefulness. However, the tradi-

tional metrics are unable to capture the usefulness of the transferred information. The

emerging concept of semantic-based reinterpretation to communication systems can

offer new solutions for defining the "right piece of the information" that is valuable

to transfer [29].

Metrics that prioritize the semantics of information center the significance and rele-

vance of the information sent [29]. Among the semantic metrics, the Age of Informa-

tion values the information concerning its freshness. The Age of Information (AoI)

at the receiver of a status update flow is defined as the time elapsed since the genera-

tion of the newest status update that has been received by the destination [15]. AoI is

gaining traction as a key performance indicator for Machine-Type Communications

(MTC). This is owed to timely update requirements in many real-time and remote

monitoring-based applications in growing networking paradigms such as the Internet

of Things, Vehicular Networks, Cyber-Physical Systems.

Similar to the Age of Information, Query-Age of Information is another member

1



of the Semantic Metrics family, prioritizing the information’s "freshness" property.

However, it differentiates from the Age of Information metric since, in the Query-

Age of Information, the freshness is important only at the query instants [4, 16, 33].

These queries are generated by the query source which can be a user or an application

that demands the latest value of the tracked information. In contrast, the Age of

Information measures the freshness of the information with giving equal importance

to every time instant.

The main motivation of this thesis is to analyze the traditional networks with a new

look provided by the arising semantic metrics named Age of Information and the

Query age of Information. To have a deep understanding of these metrics, we imple-

mented a network with Software Defined Radios and tried to observe the effects of

real-life channel imperfections on the theoretically expected results.

1.2 Contributions

The main contribution of this thesis is to report one of the first-ever experimental

studies of Age-aware MAC Layer scheduling policies. We implemented a multiuser

downlink network with a single base station and multiple receivers using SDRs. This

implementation allowed us to modify the scheduling policies and study their perfor-

mance in real-life environment scenarios. We implemented the Age-aware and query-

aware scheduling policies along with the other well-known policies and evaluated the

results in the network in terms of Age of Information and Query-Age of Information.

Besides setting up the testbed, we have made the following contributions:

Inspired by [13], we modified the traditional Max-weight Policy for the Effective AoI

system model. The resulting Query-Aware Max-Weight policy has a similar QAoI

performance with the Whittle’s Index. Besides, we observed that Max Weight Policy

might yield higher throughput than Whittle’s Index Policy in some cases.

We modified Whittle’s Index policy to give the Scheduler the ability to induce higher

reward to the successful transmissions. The resulting Policy is similar to the WIP

Policy in [12] and enables the Scheduler to adjust the throughput via an additional

2



penalty parameter inserted into the cost function. Although it is possible to increase

the throughput as a result of the modification, this increase also brings about a reduc-

tion in AoI performance.

We propose a lower bound for the proactive serving scenario of the Effective-AoI

case. The lower bound is important for practical works since the channel reliabilities

are unstable across experiments. The lower bound can be used as a benchmark to

scale the results of the experiments conducted in varying channel conditions.

We propose a weight function for the Max-Weight Policy to obtain a policy for the

Query-AoI system model. We tested the Policy and shared the results.

1.3 The Outline of the Thesis

In the second chapter, we present detailed information about the Age of Information

concept. Then, we explain the system model that we examined. We give detailed

information about the scheduling policies and share the results of the implementation.

We extend the research we have done in [23].

In the third chapter, we introduce the Effective Age of Information and Query Age of

Information concepts. We present the scheduling policies and share the results of the

experiments conducted in the SDR testbed.

In the fourth chapter, we describe our implementation environment, which consists of

Software Defined Radios. We share detailed information about our SDR testbed.

In the last chapter, we summarize the thesis, discuss the results and share our vision

for future work.
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CHAPTER 2

AGE OF INFORMATION

2.1 Literature Review

The Age of Information (AoI) at the receiver of a status update flow is defined as the

time elapsed since the generation of the newest status update that has been received

by the destination [15]. AoI is gaining traction as a key performance indicator for

Machine-Type Communications (MTC). This is owed to timely update requirements

in many real-time and remote monitoring-based applications in growing networking

paradigms such as the Internet of Things, Vehicular Networks and Cyber-Physical

Systems.

It follows from the definition above that AoI tracks the freshness of an entire flow of

information from the receiver’s point of view. It thus exhibits significantly different

behavior than delay, which is measured per packet. Notably, a low average delay

value does not imply a low average age [26, 32]. Age is a composite measure that is

related to both throughput and delay. As a result, its consideration as the objective of

a multiuser scheduling problem introduces a novel formulation. In [26], the authors

point out that the zero-wait policy may not be age-optimal in the presence of FCFS

queues.

To understand the concept of the Age of Information, we can consider a simple ve-

hicular network as an example. In this network, we assume that a central processing

system collects the necessary information for each vehicle. This information can in-

clude the status of the road or locations and velocities of other vehicles. Vehicles use

these pieces of information for autonomous driving. These pieces of information vary

with time. The central processing system generates an information packet for each

5



vehicle. Then, a common base station tries to send these packets to the vehicles. The

base station can send only one packet at each time slot.

If we examine the problem from the perspective of an autonomous vehicle, we can

notice that stale information is of no use in the driver assistant’s decisions. As the

freshness of the information obtained by the driver assistant increases, uncertainties

on information such as road conditions or the position of other vehicles are reduced.

In this way, it may be possible for the driver assistant to make more accurate decisions.

Therefore, the base station must implement a scheduling policy to keep the vehicle’s

information as fresh as possible.

There have been several studies in the area of multiuser scheduling for minimum Age

of Information. In [8], a scheduling problem with the objective of age minimiza-

tion is revealed as an NP-hard problem. In [14], age-optimal scheduling principles

were developed for a lossy multiuser channel, and optimality conditions for a Greedy

scheduler were found. In [13], a Whittle’s Index Policy was developed and contrasted

with a Max-Weight Policy.

In the multiuser scheduling problem, the timing of the packets generated by the

sources to be sent to the receivers has serious impacts on the AoI metric. In the

active source system model, the sources generate a new packet at each time slot. In

this model, each source has its own queue. These queues are managed with the LCFS

policy. Moreover, the capacity of this LCFS queue is limited to one packet. There-

fore, only the most up-to-date packet is available in the queues. In this model, it is

assumed that packets are generated deterministically at each time slot. However, in

real systems, there may be situations where the packet generation process is stochas-

tic. In [10], a case is discussed where the packet generation of the sources is Bernoulli

distributed random variable. Then, the paper examines the effect of different queuing

policies applied to the generated packets from the AoI perspective.

While most AoI related studies reported to date have been theoretical, there are also

implementation-based studies such as [1,2,7,11,23,25,27]. In [25,27], the effects of

different wireless access technologies on end-to-end TCP/IP connections were mea-

sured. In the studies [1, 7, 11] novel age-based MAC layer algorithms, including a

Max-Weight age policy, were tested on software-defined radio platforms (USRPs). A
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simple estimator was utilized to compute the channel reliability during runtime. The

work in [1] experiments on the effects of packet management policies on the per-

formance of networked control systems. Lastly, [7] developed a testbed to evaluate

various ALOHA-like random access protocols in terms of AoI. In [23], we imple-

mented and evaluated Age-aware downlink scheduling policies in SDR testbed.

2.2 AoI at the Multiuser Downlink Channel

We study a wireless downlink where multiple receiver modules try to track time-

sensitive information in the form of status update packet flows, sent to them by a

common access point or base station, over orthogonal channels. System time is di-

vided into fixed-length frames. In each frame, the base station is allowed to activate

only one link, transmitting to a single receiver. Downlink channels are unreliable such

that for each link, there is a constant probability that the packet reception will not be

successful.

The packet generation model is that one that was considered in [14]: At the beginning

of each frame, fresh packets for each flow are assumed to arrive at the BS, ready for

possible transmission. One of those will be selected for transmission, and all others

will be discarded. If a successful transmission happens, the base station is informed

over an error-free channel in the same frame.

In the network, the total number of receivers is denoted as M . We consider a finite-

horizon problem of K frames in duration. In the activated link, the probability of

successful transmission (i.e., reliability) is pi, where i ∈ 1, . . . ,M is the receiver’s

index.

The ai(k) indicates the decision of the base station in frame k. If the receiver i is

selected for transmission in frame k, then ai(k) is equal to 1. Otherwise, ai(k) is

equal to 0.

ai(k) =

 1 if the receiver i is Selected

0 otherwise
(2.1)
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Similarly, the ci(k) is an indicator for the channel state in each frame. If the channel is

ON , then the successful transmission can be made to i’th user in k’th frame; therefore

ci(k) is equal to 1. Otherwise, if the successful transmission is unavailable, ci(k) is

equal to 0. In the system model, we consider ci(k) as a Bernoulli distributed random

variable.

ci(k) =

 1 if the Channel is ON

0 Channel is OFF
(2.2)

To have a successful transmission for the receiver i in frame k, both ai(k) and ci(k)

must equal to 1. ui(k) gives the result of the transmission to user i in frame k. Calcu-

lation of ui(k) is given in (2.3).

ui(k) =

 1 if ci(k)ai(k) = 1

0 otherwise
(2.3)

The instantaneous Age of Information for flow i (i.e. receiver i) at the beginning of

the kth frame is ∆i(k). The Figure 2.1 shows an example ∆i(k) evaluation through

frames. In the figure, black arrows indicate the successful packet arrivals. As there

is no buffering in the base station and new packets arrive at the BS at the beginning

of each frame, the age of a successfully received packet is always unity. Thus, ∆i(k)

drops to 1 after successful reception. If receiver i was not selected or did not success-

fully decode a packet, ∆i(k) increases by 1 at the end of the frame. Evaluation of

∆i(k) is given in (2.4).
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Figure 2.1: Evaluation of the Instantaneous AoI through frames

∆i(k + 1) =

 1 if ui(k) = 1

∆i(k) + 1 otherwise
(2.4)

The asymmetry among the channel qualities of the receivers is an important statistic

that may significantly affect the AoI of the network. This statistic is captured by

the Coefficient of Variation CV . High CV indicates that the channel qualities highly

differ among receivers. The Calculation of the CV is given in (2.8). As [13] states that

when the CV increases, the performance of some scheduling policies (e.g., Greedy)

may suffer.

Inter-arrival times between "ON" states of the channel are used to calculate the Co-

efficient of Variation. Since we assumed the channel status is independent Bernoulli-

Distributed random variable, the corresponding inter-arrivals are i.i.d. random vari-

ables with geometric distribution. The mean value of the inter-arrivals can be cal-

culated as the mean value of a geometric random variable with a success rate pi.

Inter-arrival times between the "ON" states of the channel are described as Îci where
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i denotes the receiver’s index.

M
[
Îci

]
=

1

pi
(2.5)

To calculate CV , we define a sample mean and the sample variance of the Îci ’s in the

network at (2.6) and (2.7).

M
[
Îci

]
=

1

M

M∑
j=1

Îci (2.6)

V
[
Îci

]
=

1

M

M∑
j=1

(
Îci −M

[
Îci

])2

(2.7)

Then, the definition of the CV is given in equation (2.8).

CV =

√
V
[
Îci

]
M
[
Îci

] (2.8)

2.2.1 The Optimization Problem

The performance indicator for each receiver is the Age of Information of its corre-

sponding packet flow, which increases linearly in time in between packet receptions

and is updated at the time of successful reception of a new packet.

AoIavg =
1

2
+

1

KM

[
K∑
k=1

M∑
i=1

∆i(k)

]
(2.9)

Throughout the thesis, we assume that AoI changes in a discretized fashion and only

changes at the beginning of the frame. The term 1
2

is necessary only if the AoI con-

tinues to increase within the frame.

The utility function for the AoI, JA(π), which adopts the scheduling policy π over the

K frames and M receivers, is calculated by omitting the constant term in the (2.9).
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Throughout the thesis, we omit the 1
2

term in AoIavg and use JA(π) to denote the

Average AoI of the network.

JA(π) =
1

KM

[
K∑
k=1

M∑
i=1

∆i(k)

]
(2.10)

The objective of the optimization is to find a scheduling policy π that minimizes the

utility function.

min
π∈Π

E [JA(π)] , where JA(π) =
1

KM

K∑
k=1

M∑
i=1

∆i(k) (2.11)

2.2.2 Lower Bound for the Optimization Problem

In the literature, [13] and [3] proposed a lower bound for the system model described

in Section 2.2. The proposed lower bound by the [13] is given in Equation (2.12),

and the lower bound proposed by [3] is given in (2.13) . However, throughout this

section, we show that the lower bound in Equation (2.12) becomes loose under certain

circumstances. We observe that the lower bound in (2.13) is more strict than the

(2.12). Therefore, we will use the lower bound in (2.13) as a benchmark.

While strictly speaking, this lower bound is not for finite K, and also not valid when

pi can change in time, yet, need a benchmark to scale JA(π). Note that JA(π) could

be used for direct comparison of scheduling policies when channel reliabilities are

constant across channels. However, when there are channels with differing reliabili-

ties, which will become important as output power drops, it may be best to measure

the relative performances of algorithms to a benchmark. Hence, we will use AoINorm

((2.14)), which is the ratio of JA(π) to LB(p1, p2, ..pM), as the performance metric.

lim
K→∞

JA(π)≥ 1

2M

(
M∑
i=1

√
1

pi

)2

+
1

2
w · p.1 (2.12)
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lim
K→∞

JA(π)≥ 1

2M

(
M∑
j=1

√
1

pj

)2

+
1

2M

(
1− pj
pj

)
+

1

2

and j∗ , arg min
j

1− pj
pj

(2.13)

AoINorm =
JA(π)

LB(p1, p2, ..pM)
(2.14)

The derivation of the lower bound in the Equation 2.12is obtained by rewriting the

∆i(k) in terms of inter-deliveries. In one of the steps for derivation of this lower

bound, JA(π) is obtained in terms of variance V [Ii] and the mean M [Ii] of the inter-

arrivals (2.15).

lim
K→∞

JA(π) =
1

2M

M∑
i=1

[
V̄ [Ii]

M [Ii]
+ M [Ii] + 1

]
(2.15)

This equation gives an intuitive understanding of the underlying mechanism for min-

imizing the AoI. To minimize the AoI, frequent update packets must arrive regu-

larly [13]. The V̄ [Ii]

M[Ii]
term, which can be described as Variance to Mean Ratio(VMR)

of the inter-arrivals, indicates the regularity, the variation on the inter-arrival times

of the packets must be minimized. The M [Ii] is aligned with the frequent term. If

the updates occur more frequently, then the average inter-delivery time decrease.

In the next derivation step, the author of [13] removes the VMR term and turns the

equation into inequality using the variance of inter-arrivals, V̄ [Ii], is greater than or

equal to 0.

lim
K→∞

JA(π) ≥ 1

2M
(
M∑
i=1

M [Ii]) +
1

2
(2.16)

However, in our work, we observed that the removal of the VMR term reduces the

tightness of the bound, especially in the cases where the number of the receivers

are limited, and receivers with low pi are present. Fig. 2.2 shows the growth of the

VMR in symmetric networks when the channel reliabilities decrease. The effect of

increasing the number of receivers in the network to the equation (2.16) is shown in

Fig. 2.3. The figure shows the value of the VMR in the network as pi of the receivers

increased. The number of receivers, M , was 3, and each receiver had the same pi, i.e.,
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the network was symmetric. The pi values were increased by 0.02 in each step, and

in each step, the frame length K was 10000000. Greedy PolicyPolicy was used for

scheduling decisions. As the channel reliabilities deteriorated, the value of the VMR

increased significantly.

Figure 2.2: Evaluation of VMR with varying pi (MATLAB Simulation)

The author of [13] points out that the performance of the Greedy Policy converges to

the lower bound in the symmetric networks when the M is increased. However, we

argue that this observation results from the looseness of the lower bound, rather than

the performance of the Greedy. In the case of low M , since the lower bound becomes

looser due to the phenomenon that can be seen in Fig. 2.3, the actual performance of

the Greedy Policy was not observable. Fig. 2.3 shows the evaluation of the VMR and

the result of the utilization function given in (2.15) as the number of the receivers M

increased. When the M increases, the value of the V̄ [Ii]

M[Ii]
term in the (2.15) tends to

stay unchanged. However, since the M [Ii] increases with the M , the portion of V̄ [Ii]

M[Ii]

in the Eq.(2.15) decreases. Therefore, the effect of the V̄ [Ii]

M[Ii]
in the Equation(2.15)

decreases when the M increases.

To overcome the looseness observed in the lower bound derived in [13], another lower
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Figure 2.3: Evaluation of the Utility Function with varyingM (MATLAB Simulation)

bound from the literature is investigated. The authors of [3] also proposed lower

bound for the similar problem and both lower bounds in [13] and [3] are very similar

except [3] has an additional
1−p∗j
p∗j

term. We adapted the lower bound in [3] into the

our system model and the result is given in the Equation (2.13).

We argue that the additional term from [3] aligns with the VMR and fills the gap that

occurred by neglecting the VMR in the Equation (2.15).

To gain an insight about the additional term, we investigate a trivial system model

with only one receiver and a base station. The optimal scheduling policy for this

system model is choosing ai(k) = 1 at all frames. Therefore, the base station always

selects the only available receiver and ui(k) = ci(k) at every frame k. The successful

transmission happens at every frame where the ci(k) = 1. Then, we can calculate the

Variance to Mean Ratio for this system model when the optimal policy is utilized. The

variance to mean ratio(VMR) of the inter-deliveries between possible transmissions

for the receiver i is denoted as
V[I?i ]
M[I?i ]

. Since the channel status is an independent

random variable with Bernoulli distribution, the corresponding inter-delivery time

14



is also a random variable with Geometric distribution. We use Ic?i [n] notation to

describe the n’th inter-delivery to the receiver i under ai(k) = ci(k) assumption at

every frame. The mean value and the variance of a Geometric distribution is well

defined in the literature and we can easily define V [Ic?i ] = 1−pi
p2i

and M [Ic?i ] = 1
pi

.

Then, we calculate VMR in Equation (2.17) by using the mean value and the variance

of Ic?i [n],

V [Ic?i ]

M [Ic?i ]
=

1−pi
p2i
1
pi

V [Ic?i ]

M [Ic?i ]
=

1− pi
pi

(2.17)

In this trivial system model, we can change the scheduling policy to make the inter-

delivery times less varying. This would decrease VMR, but the resulting AoI perfor-

mance would decrease since we would waste update attempts. This result shows that

proposing a lower bound to VMR without considering M [Ic?i ] causes that bound to

become loose. Moreover, the result of VMR in the Equation (2.17) overlaps with the

additional term from the lower bound of [3] given in the Equation (2.13). We com-

ment that, in the multiple receiver case, the average VMR is bounded by the
V[Ic?i ]
M[Ic?i ]

.

This comment is described in Equation (2.18).

M∑
i=1

V [Ii]

M [Ii]
≥ 1− pj∗

pj∗
where j∗ , arg min

j

1− pj∗
pj∗

(2.18)

2.2.3 Scheduling Policies

We implement the Round Robin, Greedy, Whittle’s Index, and Max-Weight Policies

defined in [13] for the link activation decision. Both policies can operate without

requiring high computational resources.

In Round-Robin Policy, neither ages of receivers nor channel reliabilities are taken

into account. Links are activated sequentially, one in each frame. The only informa-

tion used by the base station is the former activation decisions.

The Greedy Policy takes the results of the former transmissions into account and
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tracks the AoI of the receivers. Then, selects the flow with the highest age in each

frame, ignoring channel reliabilities. Note that it will keep picking the receiver with

the largest AoI again and again until there is a successful reception. In the case of

a link with low reliability, this phenomenon will cause the whole network to go into

starvation.

Whittle’s Index and Max-Weight Policies defined in [14] take care of the starvation

problem by combining the ages of flows with the reliability of the corresponding

links, summarized by a set of weights or indices {Ci}. In each frame, the receiver

with the highest Ci will be selected for transmission [13]. The computation of this

value for the Whittle Index Policy and the Max-Weight Policy are given, respectively,

in (2.19) and (2.20).

Ci (∆i(k)) = pi∆i(k)

[
∆i(k) +

2− pi
pi

]
(2.19)

Ci (∆i(k)) = pi∆i(k)(∆i(k) + 2) (2.20)

2.3 Experiment Results

In this section, we share the results of the experiments conducted in the SDR network.

The detailed information about the experimental setup is given in 4.

To test scheduling policies in different system configurations, we altered the channel

reliabilities of the receivers. The power of the broadcasted signal from the base sta-

tion, the signal gain of the receivers, and the distance between the receiver and the

base station were the factors that caused the channel status of the receivers to vary.

Since the gain of the receivers and the Output Power Gain of the base station are vari-

ables that we can manipulate, we altered these variables to create channel variations

among experiments. The output power gain of the transmitter USRP is configured

using the Labview software.

When the gain increases, stronger signal will be sent to the receivers and the proba-

bility of successful transmission of the packets will increase. Moreover, as the output
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gain of the base station increases, the receiver further away from the base station is

more likely to receive the update packet successfully, and asymmetry between the

channels will be reduced. Similarly, we also use the Input Gain is also for modify-

ing the channel reliability. The Input Gain of the receiver is directly proportional to

the channel reliability. Increasing the Input Gain decreases the error probability and

therefore increases the channel reliability.

In the experiments, evaluated scheduling policies run at least five times at each power

gain level. The channel statistics corresponding to the experiment sets are given in

Table 2.1 and Table 2.2.

The results of the experiments are given in terms of average AoI Ja, Normalized AoI

AoINorm, and throughput. Calculation of the Average AoI is given in Equation (2.10),

and calculation of Normalized AoI is given in Equation (2.14). Throughput is calcu-

lated as the ratio between total packets sent and the total packets obtained by all

receivers. The channel statistics observed in the experiments are also shared along

with the experiment.

A normalized performance indicator is equal to 1 means the AoI of the system reaches

the theoretical lower bound. Therefore, as the normalized performance indicator ap-

proaches one, the scheduling policy approaches the optimal performance.

2.3.1 Increasing the Gain of an Individual Receiver

In the first experiment set, each of the 4 policies was tested ten times at each of the

4 plotted values of receiver gain level, and the two results were averaged. In each

experiment, the frame length was K = 7500, and there were M = 3 receiver.
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Figure 2.4: Evaluation of Average AoI JA with varying Receiver Gain (SDR Testbed)

Figure 2.5: Evaluation of Normalized AoIAoINorm with varying Receiver Gain (SDR

Testbed)
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Figure 2.6: Evaluation of Throughput with varying Receiver Gain (SDR Testbed)

Table 2.1: Channel Statistics in the First Experiment Set

Gain P1 P2 P3 CV

0 0.9997 0.0517 0.0779 0.84

1 0.9997 0.3698 0.078 1.16

2 0.9997 0.7135 0.0747 1.337

3 0.9997 0.9139 0.0795 1.361

2.3.2 Increasing the Gain of the Base Station

In this experiment set, each of the 4 policies was tested five times at each of the 4

transmitter gain levels, and the two results were averaged. In each experiment, the

frame length was K = 7500, and there were M = 3 receiver.
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Figure 2.7: Evaluation of Average AoI JA with varying BS Output Gain (SDR

Testbed)

Figure 2.8: Evaluation of Normalized AoI AoINorm with varying BS Output Gain

(SDR Testbed)
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Figure 2.9: Evaluation of Throughput with varying BS Output Gain (SDR Testbed)

Table 2.2: Channel Statistics in the Second Experiment Set

Gain P1 P2 P3 CV

0 0.9997 0.0814 0.2317 0.988

1 0.9997 0.3566 0.5891 0.496

2 0.9997 0.6811 0.8587 0.196

3 0.9997 0.9055 0.9733 0.051

2.3.3 Interpretation of the Results

As channel reliability decreases, the performances of MW and WIP differ positively

from the others. MW and WIP policies take channel reliability into account in the

scheduling decision. This enables more efficient use of transmission attempts. For

example, by reducing the number of attempts to update a receiver with very low chan-

nel reliability, starvation of the system may be prevented. On the other hand, Greedy

Policy does not use channel reliability information. The continuous unsuccessful up-
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date attempts to a receiver with very low channel reliability waste update packets;

thus, the AoI increases. In the first experiment that considers the effects of increasing

the input gain of an individual receiver, the performance drop of Greedy is more ap-

parent. Greedy Policy constantly tries to send an update packet to the third receiver.

However, the third receiver rarely receives packets successfully, and the base station

gets stuck in that receiver until the packet is appropriately received. On the other

hand, since the Round Robin policy proceeds by scanning all receivers one by one

without using any information about whether the packet is appropriately received, the

starvation problem does not occur. In both experiments, it is seen that as channel re-

liabilities of receivers improve and asymmetry of channels decreases, Greedy Policy

shows better performance than Round Robin.

As the channel conditions improve and the asymmetry among the channels decreases,

performances of both policies converge to the optimal. In case of 100 percent trans-

mission success, all scheduling policies will behave like Round Robin and scans all

receivers in order.

In the experiments, as the gain of the base station decreases, the normalized perfor-

mance indicator for MW and WIP policies moves away from one as can be seen in

Figure 2.8. We interpret this results as MW and WIP policies drift away from opti-

mality as the channel reliabilities deteriorate. We mainly explain this results by the

looseness of the lower bound at the low channel reliability region. Moreover, short-

term variations in the channel reliability throughout the experiment run can also be

a contributing factor. The channel reliability is an input for the MW and WIP poli-

cies and used to calculate the coefficient of each receiver. In the implementation,

we observed that the channel reliability often converges to a fixed value after some

time. However, at short intervals, it may not remain constant and vary continuously

throughout the experiments. As the channel reliabilities decay, this variation may be-

come more apparent, and as a result, the performances of the MW and WIP policies

may be affected.
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2.3.4 Comparison of SDR Testbed Results with Simulations

In this section, we share results of the comparison between simulation and imple-

mentation. We used the results of the experiment mentioned in Section 2.3.2 as a

reference. We used same channel reliabilities from Table 2.2 for the simulation en-

vironment and evaluated the policies. Results of the comparison in terms of Average

AoI is given in Figure 2.10, in terms of Normalized AoI is given in Figure 2.11 and

in terms of Throughput is given Figure 2.12.

Figure 2.10: Comparison of Simulation and Implementation-Average AoI

We used the same average channel reliability values in the simulation and SDR im-

plementation experiments. As a result, we did not observe any difference between

experiments in terms of throughput. However, in terms of AoI, we found that the

results in the simulation were at lower AoI values compared to the SDR implemen-

tation. In the simulation environment, the transmission availability of the channel for

each time slot is determined as a Bernoulli random variable. However, in the SDR

implementation, the channel state is formed by the real environment conditions and

does not have to be following the Bernoulli distribution. Real channels may have

memory. For example, consider a model where the noise in the channel is periodi-

cally very high for an interval and very low the rest of the time. In this noise profile,
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Figure 2.11: Comparison of Simulation and Implementation-Normalized AoI

Figure 2.12: Comparison of Simulation and Implementation-Throughput
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even if the channel reliability over time is the same as that of a channel with Bernoulli

distribution, regular packet updates may be problematic. The regular arrival of pack-

ages is an essential factor for low AoI. If channels in the implementation environment

cause more irregular packet transmission than Bernoulli for the same throughput, we

expect AoI to increase.

2.3.5 Simulation Results for High Number of Receivers

In this section, we examine the effects of an increasing number of receivers on schedul-

ing policies. Our motivation for this study is to investigate the requirements of new

technologies such as IoT or Industry 4.0, which highlights situations where many re-

ceivers communicate with a central node. For this purpose, we created a MATLAB

simulation to examine scenarios with such a high number of receivers. We chose the

average channel reliability of each receiver as a randomly chosen value between 0.01

and 1.

Figure 2.13: Evaluation of Average AoI as the number of receivers is increased-

Matlab Simulation

According to the experiment results, as the number of receivers increases, the differ-

ence between the AoI values of Age-Aware policies and traditional policies increases.
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Figure 2.14: Evaluation of Throughput as the number of rReceivers is increased-

Matlab Simulation

However, when we analyze the AoI performances of policies with respect to each

other, we observe that the ratio of the AoI values of Greedy and AoI-Aware policies

remains approximately unchanged through experiments. We consider that increasing

the number of receivers does not significantly affect the asymmetry of the channels.

If the asymmetry does not show a drastic change, we don’t expect any performance

degradation in Greedy’s performance.

Since we assigned the channel reliability values of all receivers to a randomly selected

value between 0.01 and 1, we did not encounter a significant change in throughput

as the number of receivers increased. From the experiment results in Figure 2.13, we

observe that increasing the number of receivers reduces the performance of the Round

Robin policy the most. As the number of receivers increases, the AoI difference

between Round Robin and other policies grows at a higher pace.
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CHAPTER 3

QUERY AGE OF INFORMATION

3.1 Literature Review

Metrics that prioritize the semantics of information, including AoI, centers the sig-

nificance and relevance of the information sent [29]. Among the semantic metrics,

AoI examines the freshness of the information by assigning equal importance to the

freshness at every time instant. Other metrics alter this value assignment. For ex-

ample, the Age of Incorrect Information does not attach importance to the freshness

at every moment, but only when the information is changed [17]. Similarly, in the

Query-Age of Information, the freshness of the information is valuable only at the

query instants [4, 16, 33]. The query sources generate these queries. A query source

can be a user or an application that requests the freshest information available.

The Query-Age of Information provides a way for analyzing the pull-based scenarios

with the AoI perspective. In the traditional push based network model, the packet

generation at the source unit triggers the communication process. Then, the source

unit pushes the packet to the network. In contrast, in the pull based model, the query

source proactively requests (or queries) the information. Then, the communication

process begins. In this scenario, the initiator of the communication process is the

query source that pulls the information. These requests may be generated by users or

applications tracking an information source.

There are various studies in the literature related to Query-AoI. In [33], the Effective

AoI (EAoI) metric, which is closely related to the Query-AoI, is presented. The

EAoI metric aims to minimize the sum of the AoI’s at the queried frames. According

to this metric, the Instantaneous EAoI value of the frames without query is 0. In [33],
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the EAoI metric is investigated in a downlink multiuser scheduling problem under the

pull-based model concept. For the static query probabilities scenario, a query for each

receiver was an independent and a Bernoulli-distributed random variable. The system

model also included a proactive serving scenario, the response procedure to the query

that aims to serve the freshest information as a response. For this model, Effective

AoI aware Whittle’s Index Policy was presented. In [4, 9], the Query-AoI metric was

presented. Unlike EAoI, QAoI does not include non-queried frames in the average

QAoI calculation. In [4, 9], a system model with one Receiver that has an energy

constraint is investigated. Two different Query arrival processes are applied to the

receiver. The first strategy was the Permanent Query (PQ) strategy. In the Permanent

Query case, the Scheduler was unaware of the query process and acted as a query is

present at every frame. In the end, the optimal scheduling for the PQ case turns out to

be similar to the AoI scheduling without queries. The second strategy for the query

arrivals was the Query Arrival Process-Aware (QAPA) strategy. In the QAPA case,

the query process was deterministic, and the Scheduler knew query times.

3.2 Effective Age of Information

3.2.1 System Model

The system model we use to study the EAoI is similar to the AoI model described

in Section 2.2. The base station (BS) needs to send time-sensitive packets to the re-

ceivers. In the meantime, multiple receiver modules track time-sensitive information

in the form of status update packet flows sent to them by a common access point

or base station over orthogonal channels. System time is divided into fixed-length

frames. In each frame, the base station can activate only one link, transmitting to a

single receiver. Downlink channels are unreliable such that for each link, there is a

constant probability that the packet reception will not be successful.

Every Receiver has its query source, a user, or an application that tracks the obtained

time-sensitive information by sending queries. The queries immediately reach the

receiver without error. Responses to the queries are also transmitted to the query

sources without error. Generated queries arrive at the beginning of the frame. The
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Receiver answers this request by sending the latest information received from the

base station. In a frame, the arrival of a query for a receiver is a Bernoulli distributed

random variable.This random variable is independent for each receiver i and each

frame k.

The ai(k), ci(k) and ui(k) notations have the same meaning with the Chapter 2. The

ai(k) indicates the decision of the base station in frame k. The ci(k) is an indicator

for the channel state in each frame. Lastly, the ui(k) gives the result of the transmis-

sion to user i in frame k. The detailed information about the variables are given in

Section 2.2.

ai(k) =

 1 if the receiver i is Selected

0 otherwise
(3.1)

ci(k) =

 1 if the Channel is ON

0 Channel is OFF
(3.2)

ui(k) =

 1 if ci(k)ai(k) = 1

0 otherwise
(3.3)

For each frame, the existence of a query for each receiver is modeled as independent

Bernoulli arrival. The presence of query to the receiver i in frame k is denoted with

di(k). If the receiver i is queried in frame k, then di(k) is equal to 1. Otherwise, di(k)

is equal to 0. di(k) is a Bernoulli random variable with a mean value qi.

di(k) =

 1 Receiver is Queried

0 Receiver is not Queried
(3.4)

The evaluation of the ∆qi(k) varies with the response scenario of the query. Accord-

ing to the query response scenario, receivers may immediately respond to the queries

they receive or delay the response for a while. Throughout this chapter, we investi-

gated the Instantaneous Serving scenario and the Proactive Serving Scenario.

Communication between Receivers and Query Sources proceeds through query sources’
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requests to retrieve information. On the other hand, the communication between the

base station and receivers proceeds through the effort of the base station to push in-

formation to the receivers. The receiver tries to receive up-to-date information from

the base station. On the one hand, the receiver tries to share the most up-to-date in-

formation to the query source if a query arrives. If the receiver is queried, the query

response scenario defines when the receiver will respond to this request. For example,

when the receiver is queried, it can instantly respond and send the most up-to-date in-

formation available. However, in this case, if the receiver obtains more up-to-date

information after the moment the query is responded until the end of the frame, it

misses the chance to transmit the freshest information. Within the scope of the thesis,

we study the instant response case under the name of the "Instantaneous Serving"

scenario.

In the system model we examined, the receiver knows whether the base station chooses

itself for transmission at the start of the frame. A more efficient query response sce-

nario can be obtained if the receivers utilize this information in the query responding

process. The receiver tries to receive the freshest packet until the end of the frame

and waits for the query response if it sees that the base station selects it. If it can get

the freshest packet before the frame ends, it transmits this new information as a query

response. If it fails to receive the packet, it transmits the old information it already

has. However, in the failed transmission case, as one more frame passes over the old

information while trying to receive the new packet, the AoI value of the transmitted

information increases by one frame. This query response framework is known as the

"Proactive Serving" scenario in the literature.

The instantaneous EAoI of the receiver i at the frame k is denoted as ∆qi(k). In the

Instantaneous Serving, the queries are answered immediately upon their arrival. The

figure 3.1 shows the evaluation of the EAoI under the Instantaneous Serving scenario.

The EAoI metric only considers the AoI at query instants. These instants are shown

as red dashed lines in the figure. The closed-form definition of the ∆qi(k) in the

Instantaneous Serving scenario is defined in (3.5).

∆qi(k) = di(k)∆i(k) (3.5)
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Figure 3.1: EAoI at the Instantaneous Serving scenario
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The Proactive Serving scenario is defined in [33]. In the Proactive Serving scenario,

the response to the query may be delayed by one frame or arrive before the queried

frame has ended. The Figure 3.2 shows the evaluation of the EAoI under the Instanta-

neous Serving scenario. For example, if the receiver gets a packet within the queried

frame, the receiver will immediately respond. In this case, the request and response

of the query will be in the same frame. Also, if the queried Receiver is not selected

for transmission in the queried frame, the query’s response will appear immediately.

A one-frame delay occurs only when the selected Receiver fails to obtain the packet

in the queried frame. The closed-form definition of the instantaneous EAoI metric

under the proactive serving scenario is given in Equation (3.6).

∆qi(k) =

di(k) if ui(k) = 1

di(k) (∆i(k) + ai(k)) otherwise
(3.6)

3.2.2 The Optimization Problem

The main objective in the network is the minimizing the average EAoI of the query

sources. To provide a mathematical definition for this objective, we firstly define the

Penalty function. The Penalty function calculates the average EAoI of M receivers

throughout K frames, where the Policy π is adopted as a scheduling policy. The

evaluation of the function is given in (3.7).

JE(π) =
1

KM

[
K∑
k=1

M∑
i=1

∆qi(k)

]
(3.7)

The objective of the optimization problem is to minimize the expected value of the

Penalty function.

min
π∈Π

E [JE(π)] , where JE(π) =
1

KM

[
K∑
k=1

M∑
i=1

∆qi(k)

]
(3.8)
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Figure 3.2: EAoI at the Proactive Serving scenario
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3.2.3 Scheduling Policies

Along with the policies we implemented in the AoI case in Section 2.2.3, We imple-

ment the EAoI-Aware WIP proposed in [33]. We also implement EAoI-Aware Max-

Weight Policy by modifying the Max-Weight Policy previously proposed in [13]. To

obtain a policy to achieve higher throughput, we modify the Bellman Equations and

examine the effects of this modification on Whittle’s Index Policy.

3.2.4 EAoI-Aware Max-Weight Policy

The Max-Weight Policy we used in this section is the modified version of the Max-

Weight Policy in [13]. We used this Policy under the Instantaneous Serving scenario.

To obtain the Policy, We calculated the Lyapunov Drift of the Instantaneous EAoI’s

between consecutive frames. In line with [13], we selected Quadratic Lyapunov func-

tion to calculate the Lyapunov Drift. For each receiver, calculation of the Lyapunov

Drift Yi(k) between the frames k and k + 1 is given in (3.9).

Yi(k) =E
[
∆2
qi

(k + 1)−∆2
qi

(k)
]

=E
[
d2
i (k)∆2

i (k + 1)− d2
i (k)∆2

i (k)
]

=E
[
di(k)∆2

i (k + 1)− di(k)∆2
i (k)

] (3.9)

Since we assume that policies are non-anticipative, which means the policies don’t

have an information about future channel or query status, we can argue that ∆i(k) and

di(k) are independent. Therefore, we argue that E [di(k)∆i(k)] = E [di(k)]E [∆i(k)].

We write the Lyapunov Drift using E [di(k)] = qi and E [di(k + 1)] = qi.

Yi(k) = E
[
qi∆

2
i (k + 1)− qi∆2

i (k)
]

(3.10)

After this modification, the derivation process becomes identical with the [13]. We
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write the transition of ∆i(k) between consecutive frames is given in (3.11).

∆i(k + 1) =ui(k) + (1− ui(k))(∆i(k) + 1)

=ai(k)ci(k) + (1− ai(k)ci(k))(∆i(k) + 1)
(3.11)

Then, we rewrite the Lyapunov Drift by expressing ∆i(k + 1) in terms of ∆i(k).

Yi(k) = E
[
qi [ui(k) + (1− ui(k)) (∆i(k) + 1)]2 − qi∆2

i (k)
]

(3.12)

Since ui(k) is 0-or-1 variable, we can argue that u2
i (k) = ui(k), (1 − ui(k))2 =

(1 − ui(k)) and ui(k)(1 − ui(k)) = 0. With these simplifications, we can rewrite

Yi(k).

Yi(k) =E
[
qi
[
ui(k) + (1− ui(k))(∆i(k) + 1)2

]
− qi∆2

i (k)
]

=E
[
qi
[
∆2
i (k) + 2∆i(k) + 1− ui(k)∆2

i (k)− 2ui(k)∆i(k)
]
− qi∆2

i (k)
]

=E
[
qi
[
2∆i(k) + 1− ui(k)∆2

i (k)− 2ui(k)∆i(k)
]]

=qi
[
2∆i(k) + 1− E [ui(k)] ∆2

i (k)− 2E [ui(k)] ∆i(k)
]

=
[
2qi∆i(k) + qi − qipiE [ai(k)] ∆2

i (k)− 2qipiE [ai(k)] ∆i(k)
]

(3.13)

The ai(k) is the decision variable that we can select zero or one. We only aim to

investigate the effect of changing ai(k). Since the results of other terms in Yi(k) does

not change as ai(k) change, we omit them and focus on the terms that have ai(k) as

a coefficient.

Ci(k) = qipi
(
∆2
i (k) + 2∆i(k)

)
(3.14)

Ŷi(k) =− qipiE [ai(k)] ∆2
i (k)− 2qipiE [ai(k)] ∆i(k)

= −E [ai(k)]
(
qipi

(
∆2
i (k) + 2∆i(k)

))
= −E [ai(k)]Ci(k)

(3.15)
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The Max-Weight Policy aims to minimize the average Lyapunov Drift by attempting

the eliminate the receiver i with maximum Ci(k) = qipi (∆
2
i (k) + 2∆i(k)) at every

frame k.

3.2.5 EAoI-Aware Whittle’s Index Policy

Various approaches in the literature consider the AoI related optimization problems

as a Markov Decision Process. Dynamic Programming based methods can be pro-

posed to solve MDP problems. However, Backwards Induction, the primary solution

method of dynamic programming, makes it harder to find a solution as the size of

the system examined within the scope of the problem grows. This situation is known

as the "curse of dimensionality." In contrast, the MAB-based approach provides a

Forward Induction solution that demands less computational resources [18]. There

are approaches in the literature that handles the AoI or EAoI related optimization

problems as a relaxed version of the Restless Multi-Armed Bandit problem, then pro-

poses a Whittle’s Index Policy as a solution [14, 33]. The Multi-Armed Bandit is

a problem that aims to optimize the reward in an unknown environment through a

series of trials [30, 31]. In each turn, the decision-maker is allowed to activate one

arm of the bandit. Each arm has an immediate reward(or penalty, for the minimiza-

tion problem case) related to it. Nevertheless, the immediate reward is not known

by the decision-maker before the arm selection decision. The immediate reward is a

sample in time from an underlying reward generation process. This process could be

following a specific distribution. In the Multi-Armed Bandit Problem, the distribu-

tion of the process is assumed to be not changing throughout the decisions [34]. In

the beginning, the decision-maker has no information about the process. When the

decision-maker selects an arm, it obtains an immediate reward from the decided arm.

Besides, the decision-maker grabs a piece of information about the underlying pro-

cess of the decided arm by observing the obtained reward. Therefore, as a result of

the arm selection, the decision-maker receives an immediate reward and information

about the utility process of the selected arm. In the next turn, the decision-maker may

utilize the previous information pieces for the arm selection decision. The decision-

maker has limited arm selection chances. The objective is to maximize the sum of the

immediate utilities obtained from the decisions.
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In the Multi-Armed Bandit problem, the decision-maker faces the "Exploration or

Exploitation" dilemma. A good solution for the multi-armed bandit problem lies in

bringing a balance between exploration and exploitation. The exploitation-centered

Policy seeks to maximize short-term benefits. As reward maximization is the main

objective, the Policy ignores the process of acquiring new knowledge about arms.

Therefore, the future rewards of the arms are estimated with limited information. Due

to the lack of information, this estimation may fail to discover the arms that provide

higher rewards in the long term.

On the other hand, the Exploration-Centered Policy aims to improve the information

about the reward processes of the arms, rather than the maximization of short-term re-

wards. However, applying The Exploration-Centered Policy comes with a cost. Since

the main objective of the MAB is to maximize the overall reward, the Exploration-

Centered Policy causes the selection of the arms with the low reward. Therefore, the

overall reward may drift away from the optimal.

The Bellman Equations captures the transition of the overall cost between consecutive

frames. With the Bellman Equation, states, actions, and rewards(or costs) are linked.

The Bellman Optimality Equation from an eye of an agent is given in (3.16).

V (s) = min
a

C(s, a) + γ

∑
s′

p(s
′ |s, a)V (s

′
)

 (3.16)

In the Equation (3.16), s denotes the current state of an agent, and the V (s) is the

value (cumulative cost) of the current state s. The equation describes the calculation

of the value function in terms of actions, states and the future values. After taking

the action a, the new state of the agent will be s′ . C(s, a) denotes the immediate

cost of the decision a. p(s′|s, a)V (s
′
) is the expected future cost of the action a. The

p(s
′|s, a) term is the probability of reaching s′ state when a action is selected, and the

V (s
′
) is the value(cumulative cost) of the new state s′ .

The future cost is multiplied by the discount factor γ to indicate the weight of future

costs. γ can be selected between 0 and 1. The future cost of V (s+1) has γ coefficient.

In the next future states, V (s+ 2) will have γ2, V (s+ 3) will have γ3, V (s+ n) will

have γn coefficient and so on. Since the γ is not greater than one, γn will get closer
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to zero as n goes to infinity. Therefore, as the states progress through actions, the

weight of the future states will gradually decrease with the effect of the γ multiplier.

Selecting γ equal to 1 will remove the decay of the future states, and every state will

equal weight. As the γ value decreases, the weight of the future states in the overall

sum also decreases.

With the Bellman Equation, the agent tries to minimize the overall cost through deci-

sion steps. The output of the Bellman Equation is an action set for all decision steps

that minimize the total cost.

As a result of the relaxation of the Multi-Armed Bandit Problem, the Scheduler within

the Base Station can evaluate the decision-making process independently for each re-

ceiver. We describe the individual decision-maker as agent. Each Receiver in the

network has a corresponding agent that manages the transmission trials. The Sched-

uler divides the overall scheduling problem into smaller sub-problems by assigning a

virtual agent to each receiver. Then, the Scheduler adopts the decision of the virtual

agent that achieves the best result as the overall decision.

Every action of the agent incurs a cost. This cost varies according to the current state

of the agent and the action taken. We can examine the cost of action in two parts

as the immediate cost and the future cost. The Immediate cost is the cost that the

agent directly encounters after the action it takes. Future cost is the overall cost of the

new state reached as a result of the action. The cumulative cost of the state is often

described as the value of that state.

In our system model, the EAoI minimization problem can be interpreted as a relaxed

version of a Restless Multi-Armed Bandit Problem [13, 14, 33]. Restless property of

the MAB indicates that a state change must happen after any action, even if the Idling

action is selected. In our system model, AoI increases even if the receiver is not

selected for transmission, which corresponds to a state change. In our case, the utility

maximization term in the formal definition is mapped to the Penalty minimization,

and the RMAB problem aims to minimize the penalty, the EAoI. The receivers are

arms of the bandit and the relaxed version solves the problem by treating each arm

individually. In this case, Bellman equations can be derived for each arm individually.

Since each receiver is handled independently in the relaxed version of the RMAB, we

38



should also rearrange the objective function to calculate it over a single receiver. The

average EAoI function in Equation (3.8) evolves to the Equation (3.17).

ĴE(π̂) = lim
K→∞

E

[
1

KM

[
K∑
k=1

M∑
i=1

∆qi(k) + Ĉai(k)

]]
(3.17)

The Bellman Equations for the EAoI minimization problem is described in [33] for

the proactive scenario and given in (3.19). The Instantaneous Serving scenario is

analogous with the AoI minimization problem in [13], and the corresponding cost-

to-go function is given in (3.22). Essential notations for understanding the Bellman

Equations are provided in Table 3.1

Table 3.1: Table of Notation for the Bellman Equations

f(.) Value function that gives the cumulative cost of the corresponding state

f(∆) Value(cumulative cost) of the receiver at the ∆ state

f(1) Value of the state where ∆ = 1

λ Lagrange multiplier

Ĉ Constant cost of one transmission attempt

∆ AoI of the receiver

q Expected Query Probability of the receiver

p Expected Channel Reliability of the receiver

3.2.5.1 EAoI-Aware Q-WIP For the Proactive Scenario

We rewrite the objective function in Equation (3.21) by replacing the ∆qi(k) with

the Equation (3.5). Since we are interested with the expected value of the (3.17), we
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replace di(k) with the expected value of di(k), which is equal to qi.

ĴE(π̂) = lim
K→∞

E

[
1

KM

[
K∑
k=1

M∑
i=1

∆qi(k)

]]

= lim
K→∞

E

[
1

KM

[
K∑
k=1

M∑
i=1

di(k) [ui(k) + (1− ui(k))(∆i(k) + ai(k)] + Ĉai(k)

]]
(3.18)

Then, the Bellman Equations are constructed with using the Average EAoI function

at (3.18)

f(∆) + λ = min{q∆ + f(∆ + 1);

Ĉ + (1− p)(f(∆ + 1) + q(∆ + 1)) + p(f(1) + q)}
(3.19)

The Equation (3.19) represents the costs faced by the agent during the state transition

Process. The agent is allowed to take action at every frame, which triggers the state

transition. This equation aims to minimize the total cost met by the agent by taking

the proper actions.

In the equation (3.19), ∆ is the AoI of the receiver that the agent handles and indicates

the agent’s state. f(∆) indicates the cumulative cost faced by the agent from the f(1)

state through f(∆) . As a result of its decision, the agent may choose to stay idle or

transmit the packet. Staying idle or trying transmission are the actions that the agent

can take.

The Equation (3.19) states that the total cost of staying Idle is q∆ + f(∆ + 1). The

agent who takes the idling action incurs cost of q∆ as the immediate cost and the

value of the f(∆ + 1) as the future cost. The resulting state of the agent will be

f(δ + 1) after staying idle.

When the agent takes the action of transmission attempt, it first incurs a constant

transmission attempt cost of Ĉ. In addition to this cost, it also incurs an immediate

cost that varies with the result of the transmission. The expected cost for the suc-

cessful transmission is p(f(1) + q). The f(1) indicates the value of the state where

the AoI is equal to one. In this case, the expected immediate cost is pq, and the

expected future cost is pf(1). Note that ∆ does not appear at the expected immedi-
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ate cost since the ∆ instantaneously drops to the 1 in the proactive serving scenario

after successful transmission. The failed transmission case has an expected cost of

(1−p)(f(∆+1)+q(∆+1)). In this case, the expected future cost is (1−p)(f(∆+1))

and the expected immediate cost is p(f(1) + q).

In the literature, [33] proposes Whittle’s Index Policy for the Bellman Equations in

(3.19). The resulting Policy calculates Whittle’s Index for each receiver. At each

frame k, an index Ci will be calculated for each receiver according to (3.20) and the

receiver with the highest Ci will be selected for transmission.

Ci (∆i(k)) = qi(pi∆i(k) + 2)(∆i(k)− 1) (3.20)

3.2.5.2 EAoI-Aware Q-WIP For the Instantaneous Serving Scenario

In Equation (3.21), we replace the ∆qi(k) with the corresponding equation given in

Equation (3.5). Since we are interested with the expected value of the (3.17), we

replace di(k) with the expected value of di(k), which is equal to qi.

ĴE(π) = lim
K→∞

E

[
1

KM

[
K∑
k=1

M∑
i=1

qi∆i(k) + Ĉai(k)

]]
(3.21)

The Bellman Equations for the Average EAoI function in Equation (3.21) is given in

Equation (3.22).

f(∆) + λ = min{q∆ + f(∆ + 1);

Ĉ + (1− p) (f(∆ + 1) + q∆) + p (f(1) + q∆)}
(3.22)

Similar with the Proactive serving case, the Equation (3.22) states that the total cost

of staying Idle is q∆ + f(∆ + 1). The agent who takes the idling action incurs q∆ as

the direct cost and the value of the f(∆ + 1) as the future cost. The resulting state of

the agent will be f(∆ + 1) after staying idle. The term λ is a Lagrange multiplier and

denotes the optimal average cost per frame [13].

When the agent takes the action of transmission attempt, along with the constant

transmission cost Ĉ, an immediate cost that varies with the result of the transmission
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also incurs. In the successful transmission case, the expected cost is p (f(1) + q∆). In

this case, the expected immediate cost is pq∆, and the expected future cost is pf(1).

The value of the first state f(1) is equal to zero. In the failed transmission attempt

case, the overall expected cost is (1−p)(f(∆+1)+q(∆+1)). The expected immediate

cost is (1 − p)(f(∆ + 1) + q∆) and the expected future cost is (1 − p)(f(∆ + 1)).

The Whittle’s Index Policy in [13] aligns with our system model. We replace the

weights of the receivers with qi. The resulting index is given in Equation (3.23). In

each frame, the base station selects the receiver with the highest Ci for transmission.

Ci (∆i(k)) = piqi∆i(k)

[
∆i(k) +

2− pi
pi

]
(3.23)

We argue that increasing the cost of failed transmission attempts in (3.22) may yield

higher throughput. We altered the Bellman Equations by adding constant penalty H

into the expected immediate cost of failed transmission to test this argument. Result-

ing Equation is given in (3.24).

f(∆) + λ = min{q∆ + f(∆ + 1);

Ĉ + (1− p) (f(∆ + 1) + q∆ +H) + p (f(1) + q∆)}
(3.24)

Then, we aim to derive Whittle’s Index policy for (3.24). To derive a threshold policy,

we followed the derivation steps from [13]. We firstly divide the state space into two

categories as non-transmit region and transmit region. If the action is in the non-

transmit region, then staying idle is the best action. Otherwise, a transmission attempt

is the best action. Two regions are separated with a threshold of T . If the value of

a state f(∆) is greater than the T , the action will be in the transmit region. Else,

the action will be in the non-transmit region. We denote the transmission region as

T ≤ ∆ and non-transmission region as 1 ≤ ∆ < T . Note that as ∆ increases,

the value of the corresponding state also increases. Then, updating the receiver with

high ∆ would yield a higher drop in the overall cost. Intuitively we can interpret

this as updating the receiver with high AoI would yield a more significant drop in the

Average AoI than updating the receiver with low AoI.

We investigate the transmit region by assuming the cost of Idling is greater than the
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cost of transmission attempt. Note that the value of the ∆ = 1 state, f(1) = 0. We

rewrite the Bellman Equations in the ∆ > T case.

f(∆) + λ =Ĉ + (1− p) (f(∆ + 1) + q∆ +H) + p (f(1) + q∆)

f(∆) + λ =Ĉ + q∆ + (1− p)H + (1− p) (f(∆ + 1))

f(∆) =Ĉ − λ+ q∆ + (1− p)H + (1− p) (f(∆ + 1))

(3.25)

Similarly, f(∆ + 1) and f(∆ + 2) to f(∆ + n) can be written with the same formula

in (3.25).

f(∆ + 1) =Ĉ − λ+ q(∆ + 1) + (1− p)H + (1− p) (f(∆ + 2))

f(∆ + 2) =Ĉ − λ+ q(∆ + 2) + (1− p)H + (1− p) (f(∆ + 3))

f(∆ + n) =Ĉ − λ+ q(∆ + n) + (1− p)H + (1− p) (f(∆ + n+ 1))

(3.26)

We write f(∆ + 1) into f(∆) and continue this process continuously. The result is

given in (3.27)

f(∆) =Ĉ − λ+ q∆ + (1− p)H+

+(1− p)
(
Ĉ − λ+ q(∆ + 1) + (1− p)H + (1− p) (f(∆ + 2))

)
f(∆) =

[
Ĉ − λ+ (1− p)H

] (
1 + (1− p) + (1− p)2 + (1− p)3 + ..

)
+

+ q∆
(
1 + (1− p) + 2(1− p)2 + 3(1− p)3 + ..

)
(3.27)

Since the p is positive real value with 0 < p < 1, we can use the infinite sum of

geometric series formula.

∞∑
n=0

(1− p)n =
1

p

∞∑
n=0

n(1− p)n =
1− p
p2

(3.28)

We combine the (3.27) and (3.28) to calculate the generalized version of the value

function f(∆) in T ≤ ∆ region. Note that unlike the Ĉ − λ+ (1− p)H term, the q∆

term increases as the ∆ increases among states. Therefore, unchanging terms among

states, Ĉ−λ+q∆+(1−p)H will be the subject of
∑∞

n=0(1−p)n and the increasing
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part of q∆ will be part of
∑∞

n=0 n(1− p)n as n goes to infinity.

f(∆) =

(
Ĉ − λ+ q∆ + (1− p)H

)
p

+
q(1− p)

p2
(3.29)

If we assume that the value of the current state is in the non-transmit region, then the

Bellman Equation transforms to Equation (3.30). Note that the derivation steps are

closely similar to the [13].

f(∆) + λ = q∆ + f(∆ + 1)

f(∆) = q∆ + f(∆ + 1)− λ
(3.30)

Similar with the (3.27), we go from f(T ) to f(1) by interlacing the equations.

f(T − 1) = f(T ) + q(T − 1)− λ

f(T − 2) = f(T ) + q(T − 1) + q(T − 2)− 2λ

f(T − 3) = f(T ) + q(T − 1) + q(T − 2) + q(T − 3)− 3λ

f(T − 3) = f(T ) + 3qT − q − 2q − 3q − 3λ

f(T − n) = f(T ) + n (qT − λ)− q
n∑
j=0

j

f(T − n) = f(T ) + n

(
qT − λ− q (n+ 1)

2

)
f(1) = f(T − (T − 1)) = f(T ) + (T − 1)

(
qT − λ− qT

2

)

(3.31)

By taking advantage of f(1) = 0, we can obtain a closed-form expression for f(T ).

0 = f(T ) + (T − 1)f(T ) + (T − 1)

(
qT − λ− qT

2

)
f(T ) = (1− T )

(
qT − λ− qT

2

) (3.32)

Lower and Upper bound for the Threshold’s value can be obtained by approaching

the Threshold from the transmit and non-transmit regions. The upper bound from the

Transmission region is given in (3.33), and the lower bound from the Idling region is
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given in (3.34).

q∆ + f(∆ + 1) > Ĉ + (1− p) (f(∆ + 1) + q∆ +H) + p (f(1) + q∆)

f(∆ + 1) >
Ĉ +H(1− p)

p

(3.33)

q∆ + f(∆ + 1) ≤ Ĉ + (1− p) (f(∆ + 1) + q∆ +H) + p (f(1) + q∆)

f(∆ + 1) ≤ Ĉ +H(1− p)
p

(3.34)

Then, the resulting bound for the threshold’s value is given in (3.35).

f(T ) ≤ Ĉ +H(1− p)
p

< f(T + 1) (3.35)

To evaluate the λ, we investigate the transmission region. To substitute the inequality

in (3.35) with equality, we use a dummy variable δ that 0 ≤ δ < 1. Since the

value function in (3.29) is a monotonic increasing function as ∆ increases, we can

use f(T + δ) instead of f(T + 1) to obtain an equality. Because of the monotonic

increasing property, f(T +δ) will be slightly smaller than f(T +1), and it will enable

us to reach the Ĉ+H(1−p)
p

.

Ĉ +H(1− p)
p

= f(T + δ)

Ĉ +H(1− p)
p

=

(
Ĉ − λ+ q(T + δ) + (1− p)H

)
p

+
q(1− p)

p2

(3.36)

By modifying the Equation (3.36), we evaluate the λ in (3.37).

λ =
q(1− p)

p
+ q(δ + T ) (3.37)

At the intersection of transmit and non-transmit regions, we calculate the value of the

threshold state from the perspective of each region. We equalize the f(T ) expressions

obtained from each region to find a general solution. Then, we evaluate results at
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λ = q(1−p)
p

+ q(δ + T ).

(1− T )

(
qT − λ− qT

2

)
=

(
Ĉ − λ+ qT + (1− p)H

)
p

+
q(1− p)

p2
(3.38)

We rewrite the Equation (3.38) in terms of C and H .

−2Ĉ + 2H(p− 1) + pq(T − 1)(2δ + T − 2) + 2q(δ + T − 1)

p
= 0

Ĉ = H(p− 1) +
1

2
pq(T − 1)(2δ + T − 2) + q(δ + T − 1)

T (δ) =
3

2
− 1

p
− δ +

√(
8Ĉ − 8H(−1 + p)

)
p+ q (4− 4p+ p2(−1 + 2δ)2)

2p
√
q

(3.39)

To ensure the intersection operation was valid, we investigate the dummy variable

δ. Since the ∂T
∂δ

is negative, and T (0) > T (1), we can say that T (δ) is a decreasing

function. Therefore, pushing back the transmit region’s Threshold with δ to intersect

the non transmit and transmit regions was a proper operation. We will use δ = 0 to

obtain the Whittle’s Index.

T (1) =

√
q [p(8C − 8H(p− 1)) + (p− 2)2q]

2pq
− 1

p
+

1

2

T (0) =

√
q [p(8C − 8H(p− 1)) + (p− 2)2q]

2pq
− 1

p
+

3

2

T =

⌊√
q [p(8C − 8H(p− 1)) + (p− 2)2q]

2pq
− 1

p
+

3

2

⌋ (3.40)

The Whittle’s Index calculates the Ĉ for each arm (Receiver in our case) at the begin-

ning of the transmission region. The Receiver’s state is ∆ + 1 at the beginning of the

transmission region. Therefore, we will select T = ∆ + 1.

Ĉ =
1

2
∆pq(∆− 1) + ∆q −H(1− p) (3.41)

Then, the receiver with the largest Ĉ will be selected for the transmission. If the

transmission attempt succeeds, Ĉ of the receiver will be reduced. Intuitively, Ĉ de-

notes the minimum service charge of the arm at the threshold state [13]. To obtain
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maximum drop-in service charge, the Policy attempts to transmit to the receiver with

the highest Ĉ at every frame.

Ĉi(k) =
1

2
∆i(k)piqi(∆i(k)− 1) + ∆i(k)qi −Hi(1− pi)

=
1

2
∆i(k)piqi

(
∆i(k) +

2− pi
pi

)
−Hi(1− pi)

(3.42)

To ensure the validity of the Whittle’s Index, we check the Indexability Property.

The Indexability is defined in [13]. To provide this property, we look at the non-

transmit region. In this region, as Ĉ increases, the number of states that lie in the

non-transmit region must also increase monotonically. We can observe from (3.40)

that the threshold increases as Ĉ increases.

There is one more requirement to prove that WIP is Indexable, which is challenging

to meet in our system model. As the cost increases from 0 to infinity, the number

of states in the Non-transmit region should also increase from 0 to infinity. We can

see from the Equation (3.40) that Cost and Threshold increase in parallel, but when

the cost is 0, we need to constrain the H value to ensure that no state remains in the

non-transmit region.

To find the interval of H , we limit T that it should be less than two if Ĉ is zero, then

we find the interval of H .

T = 1 =

⌊√
q [p(8H(1− p)) + (p− 2)2q]

2pq
− 1

p
+

3

2

⌋

2 >

√
q [p(8H(1− p)) + (p− 2)2q]

2pq
− 1

p
+

3

2

(3.43)

To provide the conditions in (3.43), variable H must satisfy the condition in (3.44).

0 ≤ H <
q

1− p
(3.44)

The range we found for H limits the effect of this variable.

Intuitively, when the service charge Ĉ is zero, we expect that all states would stay in

the transmission region. However, the penalty variable H may cause the Threshold

to be larger than one even if there is no service charge. We can observe this from
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the Bellman Equation in (3.24). When the Ĉ is equal to zero, the Bellman equations

will transform to (3.45). It can be seen from the (3.45) that the cost of transmission

region is increased by (1 − p)H with our penalty modification, and it may cause

the decision-maker to select the Idling action even if there is no service charge for

transmission.

f(∆) + λ = q∆ + min{f(∆ + 1);

(1− p)f(∆ + 1) + (1− p)H)}
(3.45)

To ensure that there will be no receiver in the non-transmit region when Ĉ is zero, we

redefined the Bellman Equation. Rather than assigning a penalty to the unsuccess-

ful transmission case, we added a reward term (which is a negative penalty) to the

successful transmission. With the reward term, we aimed to reduce the cost when a

successful transmission has happened. We reduced the cost of successful transmis-

sion by pH . Renewed Bellman Equations are given in (3.46).

f(1) = 0

f(∆) + λ = min{q∆ + f(∆ + 1);

Ĉ + (1− p)(f(∆ + 1) + q∆) + p (f(1) + q∆−H)}

(3.46)

Since we are not increasing the transmission cost but decreasing it, we argue that the

added term will not cause the non-transmit region to expand. At Ĉ = 0, we will not

leave any space for the non-transmit region. Therefore, the Indexability Property can

be established.

The value of the threshold from the non-transmit region’s perspective is given in

(3.47).

f(T ) = (1− T )

(
qT − λ− qT

2

)
(3.47)

The value obtained near the Threshold from the transmit region’s perspective is given

in (3.48).

f(T + δ) =

(
Ĉ − λ+ q(T + δ)− pH

)
p

+
q(1− p)

p2
(3.48)
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The boundaries of the threshold’s value is given in (3.50).

q∆ + f(∆ + 1) ≤ Ĉ + (1− p) (f(∆ + 1) + q∆) + p (f(1) + q∆−H)

f(∆ + 1) ≤ Ĉ

p
−H

(3.49)

f(T ) ≤ Ĉ

p
−H ≤ f(T + δ) (3.50)

We look up at the transmit region to find an expression for λ. The resulting equation

for λ is given in (3.53).

Ĉ

p
−H =

(
Ĉ − λ+ q(T + δ)− pH

)
p

+
q(1− p)

p2
(3.51)

λ =
q(1− p)

p
+ q(δ + T ) (3.52)

Then, we get an equation by approaching the intersection of the Transmit region and

the Non-transmit region from both directions. Then, we obtain closed-form equa-

tions for Threshold and Cost by typing the value of λ obtained in (3.52) into the

corresponding places in the equation. The resulting equation for threshold is given in

(3.54), and the equation for the Ĉ is given in (3.55).

(1− T )

(
qT − λ− qT

2

)
=

(
Ĉ − λ+ qT − pH

)
p

+
q(1− p)

p2
(3.53)

T (0) =

√
2C

pq
− 2H

q
+

(p− 2)2

4p2
− 1

p
+

3

2

T (1) =

√
2C

pq
− 2H

q
+

(p− 2)2

4p2
− 1

p
+

1

2

T (δ) =

⌊√
2C

pq
− 2H

q
+

(1− 2δ)2p2 − 4p+ 4

4p2
− δ − 1

p
+

3

2

⌋ (3.54)

We investigate the dummy variable δ. Since the ∂T
∂δ

is negative, and T (0) > T (1), we

can say that T (δ) is a decreasing function.Therefore, we argue that intersecting the
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non transmit and transmit regions with dummy variable δ was a valid operation. We

will use δ = 0 to obtain the Whittle’s Index.

Ĉ = Hp+
q(T − 1)(p(T − 2) + 2)

2
(3.55)

In the end, we look at the Indexability. We can observe from (3.54) that the Threshold

T is monotonically increasing with Ĉ. Moreover, H can only reduce the cost corre-

sponding to the Threshold since the coefficient of H is negative in the equation. If we

select Ĉ = 0 and H = 0, the resulting Threshold is equal to one, which satisfies the

Indexability constraint. As [12] applied, we assume that if Ĉ < H , then the T = 1.

Therefore, to keep the problem Indexable, H ≥ 0 must be provided.

The resulting Whittle’s Index Policy is given in Equation (3.56). At each frame k, the

base station selects the receiver i with the highest cost Ci(k).

Ci(k) = Hipi +
qipi∆i(k)(∆i(k) + 2−pi

pi
)

2
(3.56)

The resulting Policy is similar to Whittle’s Index Policy in [12]. In [12], the system

model includes throughput constraints for the receivers. Throughput incentives were

added to the cost function to meet the constraints. TheHipi term we added to the cost

function can also be considered as a throughput incentive.

3.2.6 Lower Bound for the Average EAoI Function

The lower bound is a valuable tool for implementation studies. Although the lower

bounds provided in this section are not for finite K, and also not valid when pi can

change in time, yet, we can use them as a benchmark to scale JE(π). If we use

JE(π) for direct comparison of scheduling policies, we may fail to compare the re-

sults obtained in different channel reliabilities. Therefore, to provide a performance

evaluation for the policies under various channel conditions, it may be best to measure

the relative performances of the policies to a benchmark.
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3.2.6.1 Lower Bound in the Proactive Serving Scenario

To obtain a Lower bound, we will use the framework provided by [13], and adapt it

into our case. In Table 3.2, we give the necessary notations to make the equations

more understandable. The closed-form expression of the ∆qi(k) is given in Equa-

tion 3.57.

Table 3.2: Table of Notation For Lower Bound Derivation

K Total number of frames in within an experiment i

M Total number of receivers

n index of an inter-delivery time between packets

Ii(n) Inter-delivery time of the n’th delivery of a packet to the receiver i

Li Remaining frames after the last delivery to receiver i

Ai(K) Total number of transmission attempts to receiver i up to frame K

Ui(K) Total number of successful transmissions to receiver i up to frame K

ui(k) Transmission succession status of the receiver i at frame k

qi Query Probability of the receiver i

pi Channel Reliability for the receiver i

∆qi(k) = di(k) [ui(k) + (1− ui(k))(∆i(k) + ai(k)] (3.57)

Since we aim to find a lower bound for the JE(π), we write the expression of the

∆qi(k) into the Average EAoI function given in Equation 3.58.

JE(π) = E

[
1

KM

K∑
k=1

M∑
i=1

di(k) [ui(k) + (1− ui(k))(∆i(k) + ai(k)]

]

= E

[
1

KM

K∑
k=1

M∑
i=1

di(k) [ui(k) + ∆i(k)−∆i(k)ui(k) + ai(k)− ui(k)ai(k)]

]
(3.58)

The ui(k) and ai(k) are binary variables that can only take values 0 or 1. This property
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enables us that we can say the ai(k)2 = ai(k) and the ci(k)2 = ci(k). Moreover, as

defined in (3.3), the ui(k) is the multiplication of the ai(k) and ai(k). Then, the

multiplication of ui(k) and ai(k) will be equal to the ai(k)2ci(k), which is equivalent

to the ai(k)ci(k), then, to the ui(k). In the Equation (3.59), we redefine the JE(π) by

using this result.

JE(π) = E

[
1

KM

K∑
k=1

M∑
i=1

di(k) [∆i(k)− ui(k)∆i(k) + ai(k)]

]
(3.59)

The expected value of the di(k) is equal to the qi, and the di(k) is independent from

any other variable in the Equation (3.59). Therefore, we replace the di(k) with the qi.

Moreover, since qi is constant over frames, we can exclude the qi from the summation

over K frames.

JE(π) = E

[
1

M

M∑
i=1

qi
K

K∑
k=1

(∆i(k)− ui(k)∆i(k) + ai(k))

]
(3.60)

To express the ∆i(k)−ui(k)∆i(k) in terms of inter-delivery times of the packets, we

firstly define the number of frames within an experiment in terms of inter-deliveries.

The total frame number K can be expressed as the summation of all inter-deliveries

plus the remaining frames between the last delivery and the last frame K. The result-

ing equation in (3.61) is taken from [13] and identical with the "Age Conservation

Law" from [28].

K = (

Ui(K)∑
n=1

Ii[n]) + Li,∀i ∈ {1, 2, · · · ,M} (3.61)

The sum of ui(k)∆i(k) can be defined in terms of the inter-deliveries.

K∑
k=1

ui(k)∆i(k) =

Ui(K)∑
n=1

Ii[n] (3.62)

K∑
k=1

∆i(k) =

Ui(K)∑
n=1

(
(Ii[n] + 1) Ii[n]

2

)
+

(Li + 1)Li
2

(3.63)
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qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=
qi
K

[
K∑
k=1

∆i(k)

]
− qi
K

[
K∑
k=1

ui(k)∆i(k)

]

=
qi
K

Ui(K)∑
n=1

(
(Ii[n] + 1) Ii[n]

2

)
+

(Li + 1)Li
2

−
Ui(K)∑
n=1

Ii[n]


= qi

Ui(K)∑
n=1

(
(I2
i [n] + Ii[n])

2K

)
+

(L2
i + Li)

2K
− 1

K

Ui(K)∑
n=1

Ii[n]


=
qi
2

Ui(K)∑
n=1

(
(I2
i [n]

K
− Ii[n]

K

)
+

(L2
i + Li)

K



(3.64)

Similarly, the sum of ∆i(k) is redefined in terms of the inter-deliveries. The Ui(K) is

the total number of successful arrivals to the receiver i. The index number, n, of the

last arrival up to frame K is equal to the Ui(K). We can say that the Li is equal to the

K − Ii[Ui(K)]. As the frame index K goes to infinity, the (L2
i +Li)
2K

term converges to

0. This result holds if the Ui(K) continues to increase as the K increases. Hence, the

scheduling policy must not starve any receiver to keep Ui(K) increasing as K goes

to infinity. A non-starving policy guarantees that the Ui(K) will not stop increasing

as K goes to infinity. Hence, the Li will be constrained and could not reach infinity

as K increases.

The starvation case is defined in [13]. The term "starvation" refers to a case where the

scheduling policy gives up from updating a receiver forever. Hence, the packet arrival

probability for this Receiver drops to zero as the frame number K goes to infinity. In

the scope of the thesis, the scheduling policies are assumed to be not starving any

receiver.

As K goes to infinity, the evaluation of the qi
K

[∑K
k=1 ∆i(k)− ui(k)∆i(k)

]
is given

in the Equation (3.65).

lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=
qi
2

Ui(K)∑
n=1

(
I2
i [n]

K
− Ii[n]

K

)

=
qi

2K

Ui(K)∑
n=1

I2
i [n]−

Ui(K)∑
n=1

Ii[n]

 (3.65)
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We will use the sample mean and sample variance operators from the [13] to describe

Ii[n] and I2
i [n] in terms of their mean values.

M [Ii] =
1

Ui(K)

Ui(K)∑
n=1

Ii[n] (3.66)

M
[
I2
i

]
=

1

Ui(K)

Ui(K)∑
n=1

I2
i [n] (3.67)

V̄ [Ii] =
1

Ui(K)

Ui(K)∑
n=1

(Ii[n]−M [Ii])
2

V̄ [Ii] = M
[
I2
i

]
− (M [Ii])

2

(3.68)

We write M [Ii] and M [I2
i ] into (3.65). To do this, we modify the equation by ex-

panding the terms with Ui(k).

lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=

Ui(k)

2KUi(k)

Ui(K)∑
n=1

I2
i [n]−

Ui(K)∑
n=1

Ii[n]


=
Ui(k)

2K

 1

Ui(k)

Ui(K)∑
n=1

I2
i [n]− 1

Ui(k)

Ui(K)∑
n=1

Ii[n]


=
Ui(k)

2K

[
M
[
I2
i

]
−M [Ii]

]
(3.69)

to find an expression for the M [Ii], we modify the Equation (3.61) by dividing both

sides with Ui(K).

K

Ui(K)
=

1

Ui(K)

Ui(K)∑
n=1

Ii[n]

+
Li

Ui(K)

K

Ui(K)
=M [Ii] +

Li
Ui(K)

(3.70)

At the infinite horizon of K, a non-starving policy and pi > 0 for each receiver

guarantees that the Li

Ui(K)
term converges to zero since Li has an upper bound for non-
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starving policies with pi > 0, but Ui(K) has no bound and continues to increase as

K goes to infinity.

lim
K→∞

K

Ui(K)
= M [Ii] (3.71)

We write the result of Equation (3.71) into the Equation (3.69) and obtain a solution

for limK→∞
1
K

∑K
k=1 ∆i(k) in terms of inter-deliveries.

lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=

qi
2M [Ii]

[
M
[
I2
i

]
−M [Ii]

]
lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=
qi
2

(
M [I2

i ]

M [Ii]
− 1

) (3.72)

With using Equation (3.68), we can rewrite
M[I2i ]
M[Ii]

.

lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=
qi
2

(
V [Ii]

M [Ii]
+ M [Ii]− 1

)

lim
K→∞

qi
K

[
K∑
k=1

∆i(k)− ui(k)∆i(k)

]
=
q

2

(
V [Ii]

M [Ii]

)
+
q

2
(M [Ii])−

q

2

(3.73)

Therefore, the average EAoI function JE(π) = limK→∞ E [JE(π)] can be redefined.

lim
K→∞

E [JE(π)] =
1

2M

M∑
i=1

qi
V [Ii]

M [Ii]
+

1

2M

M∑
i=1

qiM [Ii]−
1

2M

M∑
i=1

qi+

+
1

KM

K∑
k=1

M∑
i=1

qiai(k)

(3.74)

The evaluation of the 1
KM

∑K
k=1

∑M
i=1 ai(k) is given in Equation (3.75). Since the

policies we investigate are work-conserving, and the base station can select only one

receiver in each frame, the sum of all transmission attempts are equal to K. Including

qi to the summation can’t increase the result because qi is bounded between 0 and 1.

The minimum value of 1
KM

∑K
k=1

∑M
i=1 ai(k) can be achieved in a case where all the
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transmission attempts are made to the receiver with minimum qi.

1

KM

K∑
k=1

M∑
i=1

ai(k) =
1

M

≥ 1

KM

K∑
k=1

M∑
i=1

qiai(k) =
1

M

M∑
i=1

qi
K

K∑
k=1

ai(k)
1

M

M∑
i=1

qi
K
Ai(k)

≥ qt∗

M
and t∗ , arg min

t
(qt)

(3.75)

The lower bound for the 1
2M

∑M
i=1 qiM [Ii] was derived in [13], and the result of the

derivation is given in (3.76).

1

2M

M∑
i=1

qiM [Ii] =
1

2M

(
M∑
i=1

√
qi
pi

)2

(3.76)

In the literature, [3] also derives a lower bound for the similar problem by utilizing

a different method. The resulting lower bound is very similar to the one in [13], but

has an additional term. We interpret that this term is related with the 1
2M

∑M
i=1 qi

V[Ii]
M[Ii]

term which [13] discards it throughout the derivation. However, our analysis in Sec-

tion 2.2.2 reveals that the effect of 1
2M

∑M
i=1 qi

V[Ii]
M[Ii]

term increases dramatically at the

networks with a few receivers where some of them has low pi values. We discuss this

situation in more detail at the Section 2.2.2. Therefore, we will include the additional

term from [3] to provide a lower bound for 1
2M

∑M
i=1 qi

V[Ii]
M[Ii]

.

1

2M

M∑
i=1

qi
V [Ii]

M [Ii]
≥ qj∗ (1− pj∗)

pj∗
where j∗ , arg min

j

qj∗ (1− pj∗)
pj∗

(3.77)

To sum up, the resulting lower bound for the EAoI under the Proactive Serving sce-

nario is given in Equation (3.78).

lim
K→∞

E [JE(π)] ≥ 1

2M

(
M∑
i=1

√
qi
pi

)2

+
1

2M

qj∗ (1− pj∗)
pj∗

− 1

2M

M∑
i=1

qi +
qt∗

M

where j∗ , arg min
j

qj∗ (1− pj∗)
pj∗

and t∗ , arg min
t

(qt∗)

(3.78)
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3.2.6.2 Lower Bound for the Instantaneous Serving Scenario

∆qi(k) under the Instantaneous Serving scenario is given in Equation (3.79). The

Average EAoI function for this ∆qi(k) is also given in (3.80)

∆qi(k) = di(k)∆i(k) (3.79)

JE(π) = E

[
1

KM

K∑
k=1

M∑
i=1

di(k)∆i(k)

]
(3.80)

Similar with the proactive serving case, we replace the di(k) with the qi since the

expected value of the di(k) is equal to the qi, and the di(k) is independent from any

other variable in the Equation (3.80). The result is given in Equation (3.81)

JE(π) = E

[
1

M

M∑
i=1

qi
K

K∑
k=1

∆i(k)

]
(3.81)

The authors of [13] and [3] proposes more generalized version of the lower bound

that also fits to our Average EAoI function in Equation (3.81). By following similar

steps in Proactive serving case, the result of Equation (3.81) can be derived as a

combination of the lower bounds in [13] and [3]. The resulting lower bound is given

in Equation (3.82).

lim
K→∞

E [JE(π)] ≥ 1

2M

(
M∑
i=1

√
qi
pi

)2

+
1

2M

qj∗ (1− pj∗)
pj∗

+
1

2M

M∑
i=1

qi

and j∗ , arg min
j

qj∗ (1− pj∗)
pj∗

(3.82)

3.2.7 Experiments and Results on Effective AoI

Several experiments are conducted to understand the behavior of the scheduling poli-

cies and evaluate their performances under different environments. The results of the

experiments are examined in terms ofAoINorm (AoI), JE (EAoI), and the throughput.
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3.2.7.1 Testing the EAoI-Aware Q-MW With Throughput Modification

In this section, we test the throughput Adjusted Whittle’s index policy, which is given

in (3.56). We compare this Policy with the EAoI-Aware Whittle’s Index policy. The

experiment is conducted in the Matlab environment. In the experiment, there were

eight receivers. Half of the receivers have a channel reliability value equal to 0.9, and

the other half’s channel reliability is equal to 0.1. The query probabilities were also

selected as 0.9 or 0.1. The detailed information about experiment setup is given in

3.3.

Table 3.3: Channel and Query Statistics-EAoI-Aware Q-MW With Throughput Ad-

justment Experiment

Receiver Index: 1 2 3 4 5 6 7 8

Channel Reliabilities: 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1

Query Probabilities: 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1

Figure 3.3: Comparison of Throughput Adjusted WIP with the EAoI-Aware WIP in

terms of EAoI (MATLAB Simulation)
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Figure 3.4: Comparison of Throughput Adjusted WIP with the EAoI-Aware WIP in

terms of Throughput (MATLAB Simulation)

Figure 3.5: Comparison of Throughput Adjusted WIP with the EAoI-Aware WIP in

terms of AoI (MATLAB Simulation)
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3.2.7.2 Adjusting an Individual Receiver’s Gain in SDR Network

Within the scope of the examination, 240 experiments were conducted for each of

the five experiment sets, each experiment lasting K = 7500 frames. There were

three receivers (M = 3) and one transmitter in the SDR network. Experiments were

carried out at four different levels of the Second Receiver’s Input power. At these

power levels, we examined each Policy ten times. The performance of the Policy

is calculated by taking the average of the ten experiments performed. Throughout

the experiment sets, the query probabilities and the channel reliabilities are changed.

At every experiment, we used proactive serving query response scenario. For the Q-

Max Weight in the experiments, we used the EAoI-Aware Max-Weight policy derived

under the instantaneous serving scenario. For the Q-Whittle’s Index, we used the

EAoI-Aware Whittle’s Index Policy derived under proactive serving scenario.

Figure 3.6: First Experiment Set-Evaluation of Effective AoI with varying Input Gain

of Second Receiver (SDR Testbed)
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Figure 3.7: First Experiment Set-Evaluation of Throughput with varying Input Gain

of Second Receiver (SDR Testbed)

Table 3.4: First Experiment Set-Channel Statistics

Gain P1 P2 P3

0 0.9996 0.07049 0.095

1 0.9996 0.39666 0.096

2 0.9996 0.739 0.0994

3 0.9996 0.9231 0.0925

Table 3.5: First Experiment Set-Query Statistics

q1 q2 q3

0.1 0.1 0.9
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Figure 3.8: Second Experiment Set-Evaluation of Effective AoI with varying Input

Gain of Second Receiver (SDR Testbed)

Figure 3.9: Second Experiment Set-Evaluation of Throughput with varying Input

Gain of Second Receiver (SDR Testbed)
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Table 3.6: Second Experiment Set-Channel Statistics

Gain P1 P2 P3

0 0.999 0.069 0.083

1 0.999 0.413 0.080

2 0.999 0.750 0.081

3 0.999 0.934 0.081

Table 3.7: Second Experiment Set-Query Statistics

q1 q2 q3

0.9 0.1 0.1

Figure 3.10: Third Experiment Set-Evaluation of Effective AoI with varying Input

Gain of Second Receiver (SDR Testbed)
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Figure 3.11: Third Experiment Set-Evaluation of Throughput with varying Input Gain

of Second Receiver (SDR Testbed)

Table 3.8: Third Experiment Set-Channel Statistics

Gain P1 P2 P3

0 0.999 0.051 0.077

1 0.999 0.369 0.077

2 0.999 0.713 0.074

3 0.999 0.913 0.0795

Table 3.9: Third Experiment Set-Query Statistics

q1 q2 q3

0.1 0.9 0.9
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Figure 3.12: Fourth Experiment Set-Evaluation of Effective AoI with varying Input

Gain of Second Receiver (SDR Testbed)

Figure 3.13: Fourth Experiment Set-Evaluation of Throughput with varying Input

Gain of Second Receiver (SDR Testbed)
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Table 3.10: Fourth Experiment Set-Channel Statistics

Gain P1 P2 P3

0 0.999 0.363 0.078

1 0.999 0.735 0.076

2 0.999 0.930 0.077

Table 3.11: Fourth Experiment Set-Query Statistics

q1 q2 q3

0.9 0.9 0.1

3.2.7.3 Adjusting the Output Power of BS in SDR Network

Within the scope of the examination, three sets of experiments are conducted where

each of them consists of at least 120 individual experiments. The individual exper-

iments run for 7500 frames. There were three receivers and one transmitter in the

SDR network. Experiments were carried out at different levels of the Base Station’s

output gains. At these power levels, we examined each Policy at least five times.

The performance of the Policy is calculated by taking the average of the experiments

performed.
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Figure 3.14: First Experiment-Evaluation of Effective AoI with varying Output Gain

of BS (SDR Testbed)

Figure 3.15: First Experiment-Evaluation of Throughput with varying Output Gain

of BS (SDR Testbed)
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Table 3.12: First Experiment-Channel Statistics

Gain P1 P2 P3

0 0.999 0.075 0.231

1 0.999 0.339 0.587

2 0.999 0.662 0.854

3 0.999 0.905 0.973

Table 3.13: First Experiment-Query Statistics

q1 q2 q3

0.1 0.9 0.9

Figure 3.16: Second Experiment-Evaluation of Effective AoI with varying Output

Gain of BS (SDR Testbed)
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Figure 3.17: Second Experiment-Evaluation of Throughput with varying Output Gain

of BS (SDR Testbed)

Table 3.14: Second Experiment-Channel Statistics

Gain P1 P2 P3

0 0.9997 0.6652 0.2439

1 0.9997 0.9073 0.5983

2 0.9997 0.9830 0.8651

3 0.9997 0.9980 0.9736

Table 3.15: Second Experiment-Query Statistics

q1 q2 q3

0.9 0.1 0.1

69



3.2.8 Interpretation of the Results

When we examine the experiments in general, we can see that the EAoI-Aware Q-

MW and EAoI-Aware Q-MW Policies exhibit a more successful EAoI performance

than those that do not use query information.

If we minimize the qi
pi

ratio, assuming we keep the sum of the qi’s unchanged, we can

observe that EAoI-aware policies give better EAoI performance than AoI-Aware Poli-

cies. The test results show that the difference between EAoI policies and AoI policies

narrows when a high query probability is given to the receiver with low channel reli-

ability. The experiments show that when the query probabilities are aligned with the

channel reliabilities, the EAoI-Aware Policies tend to obtain better EAoI results than

AoI-aware Policies.

EAoI-Aware Q-MW Policy shows similar EAoI performance as EAoI-Aware Q-MW.

However, it is seen that EAoI-Aware Q-MW policy provides higher throughput than

EAoI-Aware Q-MW. This difference may be caused by the weights of the channel

reliability values in the cost functions. The channel reliability in the cost function of

the EAoI-Aware Q-MW Policy has a higher weight than the channel reliability in the

cost function of the EAoI-Aware Q-MW. As a result, EAoI-Aware Q-MW policy is

more inclined to choose the receiver with high channel reliability, which is reflected

in the throughput.

3.3 Query Age of Information

Similar to EAoI, Query Age of Information(QAoI) can be used to examine pull-based

scenarios. The difference between the metrics is due to their calculation methods.

While calculating the EAoI metric, the instant EAoI value of the non-queried frames

was taken as zero, and these values were used to calculate the average EAoI. There-

fore, in the Average EAoI calculation, the sum of all Instantaneous AoIs at queried

frames was divided by 1
KM

. The EAoI provides consistent results for the experiments

performed under exact query probabilities. However, EAoI may provide mislead-

ing results under some circumstances, especially in comparing the experiments per-
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formed at different query probabilities. For example, in an experimental setup with

very low query probabilities, no matter how poor is the Scheduling Policy we choose,

the EAoI metric will take a low value because non-query frames are included in the

average as 0. In another experimental setup with very high query probabilities, since

EAoI takes a value greater than 0 at query moments, no matter how good the schedul-

ing policy we choose, the average EAoI will be higher than the experiment with low

query probability. Besides the EAoI, the QAoI metric does not include non-queried

frames in the average QAoI calculation and focuses on the average AoI per query.

In QAoI section, the System model and the variables are similar to the EAoI case.

Throughout this section, we use the Instantaneous serving for the Query Response

scenario. Unlike the EAoI model, we examine the cases where the Query arrivals are

not Bernoulli-distributed random variable, and we assume that, additional informa-

tion about the underlying query mechanism is available to the scheduler.

3.3.1 The Optimization Problem

The calculation of the average Query-Age of Information is given in (3.83). We define

Qi(K) as the total number of queries arrived at Receiver i up to frame K.

JQ(π) =
1

M

 M∑
i=1

1

Qi(K)

Qi(K)∑
k=1

∆qi(k)

 (3.83)

The objective of the optimization problem is to minimize the expected value of aver-

age QAoI. We denote π as the Scheduling Policy among the set of scheduling policies

Π.

min
π∈Π

E [JQ(π)] , where JQ(π) =
1

M

 M∑
i=1

1

Qi(K)

Qi(K)∑
k=1

∆qi(k)

 (3.84)

The calculation of ∆qi(k) under the Instantaneous Serving scenario was given in

(3.5). In Equation (3.85), we argue that since the values of the non-queried frames

are equal to zero, changing the upper limit of the summation from Qi(K) to K yields
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the same result.

Qi(K)∑
k=1

∆qi(k) =
K∑
k=1

∆qi(k) (3.85)

We can obtain an Average QAoI function similar to the average AoI and average

QAoI functions we examined earlier by rearranging the Equation .

JQ(π) =
1

M

[
M∑
i=1

1

Qi(K)

K∑
k=1

di(k)∆i(k)

]

=
1

M

[
M∑
i=1

K

Qi(K)

1

K

K∑
k=1

di(k)∆i(k)

]

=
1

M

[
M∑
i=1

1

K

K∑
k=1

Kdi(k)

Qi(K)
∆i(k)

]

=
1

KM

[
M∑
i=1

K∑
k=1

wi(k)∆i(k)

]
(3.86)

The resulting Average QAoI function is very similar to the Average AoI function

we used in Chapter 2. The average AoI with weights was extensively investigated

in [13]. However, the main difference between AoI and QAoI is that the weight of

the receivers wi(k) are not constant in the QAoI case and may vary among frames.

The calculation of the wi(k) is given in (3.87).

wi(k) =
Kdi(k)

Qi(K)
(3.87)

Note that if we consider the query arrivals are i.i.d. Bernoulli-distributed random

variables as we assumed earlier in the EAoI case, the wi(k) would be equal to the

one at every frame. Therefore, the resulting problem would be identical to the AoI

minimization problem. The evaluation of wi(k) under the i.i.d Bernoulli distributed

72



query arrival scenario is given in (3.88).

lim
K→∞

E
[
Qi(K)

K

]
= qi

lim
K→∞

E [di(k)] = qi

lim
K→∞

E
[

K

Qi(K)
qi

]
=
qi
qi

= 1

(3.88)

We define the elapsed number of frames between n − 1th and nth Query arrivals for

receiver i as IQi
[n]. Similar to the age conservation law in [28], we define the "query

conservation law". We argue that sum of all query inter-arrivals and the remainder

term Li will be equal to total number of frames K.

K =(

Qi(K)∑
n=1

IQi
[n]) + Li,∀i ∈ {1, 2, · · · ,M} (3.89)

We define the sample mean operator for the query inter-arrivals in (3.90).

M [IQi
] =

1

Qi(K)

Qi(K)∑
n=1

IQi
[n] (3.90)

We take the limit of the K
Qi(K)

as K goes to infinity. Throughout the chapter, we

assume that query probabilities of the receivers are greater than zero. Under this as-

sumption, we argue that Li

Qi(K)
term will become zero as K goes to infinity. Therefore

we discard this term and calculate the mean time between query inter-arrivals M [IQi
]

in Equation (3.91).

lim
K→∞

K

Qi(K)
=

1

Qi(K)

Qi(K)∑
n=1

IQi
[n] +

Li
Qi(K)

lim
K→∞

K

Qi(K)
=

1

Qi(K)

Qi(K)∑
n=1

IQi
[n]

lim
K→∞

K

Qi(K)
= M [IQi

]

(3.91)

3.3.2 Scheduling Policies

Throughout this section, we examine the variation of the QAoI metric in the case of

a Markovian Query arrival process, assuming the behavior of the Query Source is
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aligned with an Ergodic Markov Chain. In the Markov chain, we assume that there a

class of states that represents the arrival of the query. We denote states in this class as

the Query State. The query is generated only when the Query source is in the Query

States and not generated when the Query Source is in other states. Throughout this

section, we assume that the Scheduler knows the current state of the query source.

Moreover, we assume that there is only one Query State in the Markov Chain.

For scheduling decisions, we use the Max-Weight Policy, which was derived in [13]

and used for AoI minimization. We were also used Max-Weight for EAoI minimiza-

tion in 3.2.4. In the AoI and EAoI cases, the weight was a constant value that does not

vary through frames. In this section, we modify this variable according to (3.87), by

assigning different weights to the states of the Markov Chain. Therefore, as a result

of our modification the weights of the receivers may vary through frames.

In our case, the Max-Weight Policy will aim to minimize the average Lyapunov Drift

by attempting the eliminate the receiver i with maximum Ci(k) at every frame k.

Ci(k) = wi(k)pi
(
∆2
i (k) + 2∆i(k)

)
(3.92)

Table 3.16: Table of Notation For Query-AoI

Qi(K) total number of queries arrived to receiver i up to frame K

tŝ(s) Expected number of frames from state s to reach the Query State ŝ

P (s) Steady State probability of state s

P (ŝ) Steady State probability of the query state

qi Query Probability of the receiver i

As we mentioned earlier, we assume that the queries are generated from an Ergodic

Markovian Source. We calculate the weight parameter of Max-Weight for each state

s of the Markov Chain. To calculate wi(k), we use the mean passage times and the

steady-state probabilities. We assume that Qi(K)
K

is aligned with the average query

probability for the receiver i throughout K frames. In the Markov Chain domain, the

average query arrival probability is equal to the steady state probability of the Query
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State.

lim
K→∞

E
[
Qi(K)

K

]
= P (ŝ) =

1

M [IQi
]

(3.93)

We calculate E [di(k)] for each non-query state. We assume that E [di(k)] is related

with the mean passage time of the current state s to the Query State ŝ. If the query

source is in the Query State, we assume that E [di(k)] is related with the mean recur-

rence time.

lim
K→∞

E [di(k)] =
1

tŝ(s)
(3.94)

Then, we evaluate the wi(k) for state s in (3.95).

lim
K→∞

E
[

K

Qi(K)
di(k)

]
=

1

P (ŝ)tŝ(s)
(3.95)

In the literature, [4] used a system model that includes a deterministic and periodic

query arrival process. We can analyze this case as a Markov Chain with state tran-

sition probabilities equal to one. Although the periodicity violates our ergodic chain

assumption, we argue that we can determine the weights of the states in this process

as we did in the stochastic arrival case. In this case, mean passage time tŝ(s) is not

stochastic anymore and perfectly known for every state s. Assuming that only one

query arrives at every period, and the period of the query arrival process is equal to

P , then the the expected query probability will be equal to 1
P

.

3.3.3 Experiment Results

We conducted experiments in a simulation environment to examine how the QAoI-

Aware Max Weight policy performed within the scope of the QAoI metric. Through-

out the experiments, we compared the QAoI-Aware Max-Weight and the traditional

AoI-Aware Max-Weight from [13] with unity weight throughout frames. We assumed

that self-transition probabilities of the Query States are zero, which means that con-

secutive query arrivals will not occur.

3.3.3.1 Experiments on Stochastic Query Arrival Process

We firstly investigate the Stochastic Query Arrival Case. We used the Markov Chain

in 3.18 for the Query arrival process. In this Markov Chain, third state is assumed to
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1 2 31− s1

s1

1− s2

s2

s3

1− s3

Figure 3.18: Markov Chain with one Query State (3) and two Non-Query States (1

and 2)

be the Query State.

In the first experiment, we simulated a network consisting of 20 receivers. The

channel reliabilities of the receivers were uniformly distributed between 0.05 and

1. Throughout the experiment, we changed the transition probability of the first state

s1. The transition probability of the second state s2 was constant and equal to 0.2,

and the transition probability of the Query state was also constant equal to one, which

indicates that consequent queries will not occur. The evaluation of AoI in the first ex-

periment is given in 3.20, and the evaluation of QAoI in the first experiment is given

in 3.19.

Figure 3.19: Evaluation of QAoI in the Experiment Set 1 (MATLAB Simulation)
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Figure 3.20: Evaluation of AoI in the Experiment Set 1 (MATLAB Simulation)

The results show that, by utilizing the weights, we were able to reduce QAoI. De-

creasing the transition probability of the first state in our model increases the QAoI

performance. We interpret this result as the Scheduling Policy performs better when

the total number of queries per receiver is low and query arrivals are more infrequent.

In the second experiment, we altered the number of receivers in the network. The

channel reliabilities of the receivers were uniformly distributed. The transition prob-

ability of the first state s1 was constant and equal to 0.1. The transition probability of

the second state s2 was also constant and equal to 0.2. The transition probability of

the Query state was equal to one. The evaluation of AoI in the second experiment is

given in 3.22, and the evaluation of QAoI in the second experiment is given in 3.21.

The gap between the Max-Weight and Query-Aware Max-Weight widens by increas-

ing the number of receivers in the network. As the average AoI increases in the

network with increasing number of receivers, the difference between AoI and QAoI

becomes more visible.

In both experiments, the AoI performance of Query Aware Max Weight is worse than

the traditional Max-Weight. This is because Query Aware Max Weight Policy tries to

improve QAoI performance by sacrificing AoI performance.
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Figure 3.21: Evaluation of QAoI in the Experiment Set 2 (MATLAB Simulation)

Figure 3.22: Evaluation of AoI in the Experiment Set 2 (MATLAB Simulation)
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3.3.3.2 Experiments on Periodic Query Arrival Process

The query process is deterministic in the Periodic Arrival case. In this section, we

shared the Average AoI and Average QAoI results of the third experiment.

Figure 3.23: Evaluation of QAoI in the Experiment 3 (MATLAB Simulation)

The results of the third experiment indicate that decreasing the query period reduces

the performance of QAoI-MW Policy. If we interpret the Period as a Markov chain

containing as many states as the period width, an increase in the period width can be

interpreted as an increase in the number of states. As the number of states increases,

the weights of the MW are more quantized. The more precise distribution of weights

could explain the performance increase of the AoI-Aware Max-Weight Policy. More-

over, as we observed in the first experiment, increasing the query inter-arrival times

may positively effect the performance of QAoI-MW.
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Figure 3.24: Evaluation of AoI in the Experiment 3 (MATLAB Simulation)
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CHAPTER 4

IMPLEMENTATION

4.1 Background Information

Research on theoretically designed system models may not yield the same results

in real communication systems. The implementation studies intend to discover the

details that the real system could observe but the theoretical model miss.

4.1.1 Software Defined Radios

Software-based radios, which are known as "Software radios" in pioneering stud-

ies [19], are radios whose some of the physical layer features such as center frequency,

bandwidth, coding of the communication system can be changed by modifying the

software [5]. Since these devices enable us to intervene in the communication system

starting from the Physical Layer, one can alter various parameters and protocols from

the physical layer to the application layer. These radios play an essential role in de-

veloping today’s technologies that require communication across multiple frequency

bands and standards.

Allowing changes to be made in the Physical Layer and Data Link Layer makes

Software-Dased Radios particularly important. Without the Software Defined Radios,

it would be necessary to modify the hardware to make such a change, which creates a

significant burden in terms of time and cost. Thanks to Software-Defined Radios, one

can change the Physical Layer or Data Link layer by simply changing the device’s

software. This changeable process enables rapid prototyping of new designs [6].

We used Ettus USRP N210, NI USRP 2920, and NI USRP 2930 SDR devices in
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the implementation. The overview of a NI USRP 2920 taken from [22] is given in

4.1. The USRP 2920 has one transmit module and one receive module, which are

independent of each other. For this reason, the USRP2920 can be used as both a

transmitter and a receiver at the same time. However, it is not possible to execute two

receive operations or two transmit operations simultaneously. The device has two

RF ports. The signal from RF ports can be switched inside the USRP. This switch

structure allows both ports to be defined as receivers but does not allow both ports

to be defined as transmitters. The connection of the device with the host computer

is provided via a 1 GB Ethernet link. In-Phase and quadrature components of the

signal are carried over this link. In a Transmission scenario, Ethernet packets coming

from the host containing In-Phase and Quadrature signal information are converted to

Analog signal in USRP. The resulting signal is filtered, then, In-Phase and Quadrature

signals are mixed and sent to the Transmit Amplifier. The output gain of this amplifier

can be controlled by software. The signal at the amplifier output is given to the

antenna from the TX1 port. In the Receive scenario, the signal from the antenna

is transmitted to the Receive module over the RF switch. Within this module, the

signal first passes through the LNA. It then passes through an Amplifier whose gain

can be controlled by software. In the next step, the signal is split into In-Phase and

Quadrature components, filtered and digitized, then sent to the Host Computer within

the ethernet frame [22].

Figure 4.1: Overview of the NI USRP2920
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4.2 Implementation of the network

4.2.1 Overview

To implement the network and the scheduling methods, we used four USRP Software-

Defined Radios. One of the USRPs was the base station, and the other three were

the receiver modules. The radios were communicating with the host computer via

Ethernet connection. Synchronization problems are thus avoided as all USRPs are

managed from a single host computer. The system is controlled on a Labview session

interfacing with the USRP devices. The base station and receiver modules work on

different threads in the same Labview session. Time is discretized in 50ms-length

frames, and Labview keeps track of the frame number, i.e., the total number of frames

passed since the system started. The frame number is the reference clock of the

system. At each frame, a message with a timestamp is prepared in Labview and sent

to the Transmitter USRP, which then sends it to the air interface. In the meantime,

receiver USRPs collect data from the air interface. This data is sent to the Labview

session and analyzed. The succession of the Transmission is tracked in Labview. The

overview of the parameters in our implementation is given in 4.1.

An overview of the SDR network is given in Figure 4.2. The packet content created

in the Labview environment on the host computer is sent to the base station via an

Ethernet connection after being modulated with QPSK modulation. The base station

broadcasts the constructed signal on the air interface. Receivers listen to the air in-

terface and send the signal they obtain to the Host computer via Ethernet connection.

Demodulation of the signal and error detection with CRC is made via the Labview

program at the Host Computer. Messages without errors are used in the calculation of

AoI. The USRP receivers are located at different distances from the base station for

obtaining asymmetric channel reliabilities due to significantly different path losses.

Experiments are thus aimed to be conducted under diverse channel reliabilities.

We used QPSK modulation at the air interface. In QPSK, each symbol carries two

bits of information. Maximum operating frequency of USRP-2920 is 2.2GHz [20].

To cause higher path loss, we aimed to choose the center frequency of the carrier

signal as large as possible. Therefore we choose Center Frequency as 1.9GHz, and
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Figure 4.2: Overview of the Implementation

Table 4.1: Overview of Parameters

Modulation: Quadrature Phase-Shift Keying

Center Frequency: 1.9GHz

I/Q Rate: 500k Samples/sec

Sample Rate: 400k Samples/sec

Bandwidth: 200kHz

Bits Per Symbol: 2

Samples Per Symbol: 8

Duration of one Frame: 50ms
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this value is identical for all receivers.

We can configure the sampling rate of the USRP via LabVIEW. This configuration

is presented in the USRP documentation under the name I/Q rate [20]. NI states

that I/Q Rate must be multiplied by 0.8 to convert to the sampling rate [21]. In

our experiments, we used 500k Samples/sec as the I/Q rate. This corresponds to a

sampling rate of 400k Samples/sec, hence a bandwidth of 200kHz. This bandwidth

is more than enough for our application. If higher I/Q rates are selected, an increase

in bandwidth can be achieved, but an increase in the number of samples processed

per second can both cause slowdowns in the internal order of the USRP and cause

more load on the Ethernet line between the Host Computer and USRP. Since the

time-sensitivity in AoI calculations is susceptible, we kept the I/Q Rate low to obtain

a more deterministic working system and not to overload the USRP.

4.2.2 Packet Interface

Each packet sent by the base station consists of the message, cyclic redundancy check

(CRC), Guard and Synchronization fields. The structure of a packet is illustrated in

Figure 4.3.

6 guard bits are placed at the beginning of the packet. The Pulse Shaping Filter, which

puts digital signals in a transmittable form, discards these 6 bits. These bits that do not

carry any information are placed to prevent the pulse shaping filter from destroying

the bits that carry information.

Implementation includes a 30-bit synchronization sequence known to both the sender

and receiver modules. The Receiver, which continuously samples the air interface,

can detect the beginning of the packet with the help of this sequence. This 30-bit

series is formed with a function provided by Labview that generates pseudorandom

data in the Galois domain.

The semantic information in the packet is carried in the message area. The message

area consists of two parts: Receiver ID (RX ID) and Packet ID. In our implementation,

since all receivers listen to the same frequency, the packet sent by the Transmitter

to the air interface reaches all receivers, provided that the channel conditions are
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appropriate. However, in the system model we examined, each packet has only one

Receiver. For this purpose, there is a Receiver ID field in the packet, which contains

the Receiver’s index that the Base Station sent the packet. RX ID is a 4-bit sequence

used as a unique identifier for the receivers (note that the number of receivers in our

experiment is only 3, which is below 16). Upon receiving a packet, each Receiver

compares this field with its own RX ID and decides whether the packet belongs to

it. If the RX IDs of the packet and Receiver do not match, the Receiver discards the

packet, and the ∆i(k) for this Receiver is increased in the next frame.

As mentioned in 4.2.1, the frame number is used as a reference clock of the system.

It starts with one at the beginning of each experiment and increases by one at every

frame. We used the frame number as a packet timestamp. We used Frame Number

as packet timestamp and AoI calculation tool since we considered it as the common

time reference of the whole system. With the Packet ID field, we carry the generation

time of the packet. The Generation time of the packet indicates the Frame number

of the system when the packet is formed. Upon the reception, the Receiver gains

information about the generation time of the packet. As the Receiver also knows the

actual frame number, the instantaneous Age of Information ∆i(k) can be computed

upon the reception of a packet as the difference between the actual frame number and

the Packet ID.

Due to noise, there may be distortions in the packets received by the Receiver. We

must discard the corrupted package. Otherwise, these distortions may cause us to

be unable to measure the AoI of the network or to mismeasure it. 16-bits Cyclic

Redundancy Check (CRC) is used in the implementation to detect corrupted packets.

The message field of the packet is given as an input to the 16-bits CRC. When the

Receiver obtains the packet, it passes the message part of the packet through the

CRC and compares the results with the CRC field in the packet. If they match, the

message is considered received without error, and the number of successful CRC

checks for that Receiver increases by one. In the system, this value is kept for all

receivers and updated at each frame. The total number of correct CRC checks for

Receiver i is divided by the actual frame number of the system to calculate the channel

reliability pi of the Receiver i. If the system’s configuration is not changed, i.e., the

transmitter output signal gain, operating frequency, or the locations of the USRP’s
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are not changed, the channel reliabilities are assumed to converge. Since MW and

WIP policies take channel reliability as input, it is essential to calculate this value

precisely. In the implementation, we calculated the channel reliabilities dynamically

throughout the experiment. To obtain a value of channel reliability at the start of the

experiment, we pre-run the experiment setup for 100 frames. During these frames,

only the pi values are initialized without making AoI calculations. In this way, we

take a precaution against the incorrect estimate of channel reliability at the start of the

experiment.

Figure 4.3: Packet content in the air interface

4.2.3 Runtime of the SDR Network

Labview environment contains useful built-in functions for communication system

implementation. We used them frequently in our study. We also benefited from

the examples regarding the PSK-Modulated communication system and packet-based

digital link examples provided by the Labview and the Labview Community [24].

The working mechanism of the system is given in the figure 4.4. Since the Labview

program allows multi-threading, we were able to execute processes independently

in different threads. Receiver modules, the Transmitter module, and the Logging

Module are implemented as separate threads in the program. In this way, we were

able to carry out these operations simultaneously. Labview program has the feature

of providing synchronization between threads. By putting this feature into use, it was
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possible to organize processes running in different threads and should be consecutive

to each other.

With the update of the frame number, we consider that the new frame has begun. Re-

ceivers, each running in a separate thread, perform the data collection process from

Receiver USRPs at the start of the frame. Meanwhile, the Transmission thread calcu-

lates the instantaneous AoI’s of the receivers with the data obtained in the previous

frame. AoI information and channel statistics are the inputs of the scheduling policy.

The policy reports the Receiver selected in the new frame as output. This information

is written in the "Receiver ID" field in the package created for the Transmission. The

current frame number is also written in the "Packet ID" field. After completing the

content, the packet is modulated using Labview’s Modulation function and prepared

for Transmission. The transmission thread transmits this data over Ethernet to Trans-

mitter USRP. The transmitter USRP converts this information to an RF signal and

broadcasts it on the air interface.

We kept the receiver thread’s acquisition time long enough compared to the trans-

mitter thread’s time to create a packet and send it to the air interface. We used the

synchronization feature of the Labview program. The Transmission and the Receiver

threads are synchronized. With synchronization, it is intended that the Receiver can

capture the signal sent by the Transmitter. After the acquisition process, the Receiver

thread demodulates the signal with Labview’s demodulation function. This function

also takes synchronization bits as input. We can obtain the packet if the demodulation

process succeeds. In the received data, first of all, CRC control is performed. The

Receiver knows that the CRC result lies between the 17th and 32nd bits of the packet

content. Then, the Receiver thread passes the first 16 bits of data through the CRC.

Then, it compares this result with the CRC field in the packet. If the values are iden-

tical, then the CRC result of the packet is considered as successful. Otherwise, the

packet is discarded. A packet that passes this stage successfully enters the Receiver

ID control stage secondly. If the Receiver ID in the package content is different from

the Receiver’s own ID, the Receiver discards the packet again. Still, it increases the

number of packets that it can receive its CRC correctly. This statistic is then used in

the channel reliability calculation. The packet that passes these controls is saved into

a variable. The result of the overall receive process is also saved to the memory as a
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boolean variable. These variables are used in AoI and EAoI calculations. Receiver

threads that have finished their operations are set to be idle for a while. The receiver

module starts to listen to the air interface again before the new frame starts to ensure

the acquisition process begins before the transmission process.

Results obtained in a frame are passed to another thread. The main task of this thread

is to calculate the average AoI and EAoI based on the results of the experiments. In

addition, the calculation of channel reliability, general statistics about the experiments

are also calculated in this thread. After the experiment is completed, information

about the overall test results is noted in a text file.

Figure 4.4: Runtime of the SDR Network
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Within the scope of the thesis, we examine Age of Information, Query Age of Infor-

mation, and Effective Age of Information, which are included in the set of semantic

metrics. First of all, we study the Age of Information metric. By implementing AoI-

aware policies on SDRs, we examine how these policies perform in real environment

conditions.

In the AoI domain, we studied the performance of different wireless link scheduling

policies (Round Robin, Greedy, Whittle’s Index Policy, and Max-Weight) in terms of

the AoI. Emulation results reveal that the Whittle’s Index and Max-Weight policies

are superior to Round Robin and Greedy Policies, as they take the link reliabilities

into account. Experiment results are close to the theoretical ones when the link reli-

abilities are higher. As the link reliabilities decreased, the Normalized performances

of the Max-Weight Policy and Whittle’s Index Policy gradually drifted away from

the theoretical lower bound. We interpret that this performance drop is caused by

the looseness of the lower bound at lower channel reliabilities and the varying noise

profile of the real environment.

Next, we discuss the Effective AoI and Query AoI metrics used to examine pull-

based networks. Using the methods defined for AoI in the literature, we derive a

Lower bound for Effective AoI in the Proactive Serving scenario. We use the Max-

Weight Policy in the literature for our studies on the SDR network by adapting it to

the Effective AoI model. We obtain Throughput-adjustable Whittle’s Index Policy

by adding a small change to Whittle’s Index Policy. We implemented and tested

the EAoI-Aware Max Weight and EAoI-Aware Whittle’s Index Policies on the SDR

Network.
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In the EAoI domain, experiments show that utilizing the statistical information about

the query process increases the EAoI performance of Whittle’s Index and Max Weight.

However, the EAoI performance gap between the Query-aware policies and AoI-

aware policies is dependent on the alignment of channel reliabilities and the query

probabilities. We observed that Q-MW Policy often provides higher throughput than

the Q-WIP Policy.

We study the Query-AoI metric, similar to the EAoI metric but does not include the

non-queried frames in the average Age calculation. In contrast, the EAoI includes

the non-queried frames by assuming their value is equal to zero. By adapting the

Max-Weight Policy to the QAoI case, we obtain a scheduling policy that can operate

in multi-user networks. For the adaptation of the Max-Weight to the QAoI domain,

we propose a weight function. We tested the resulting QAoI-Aware Max Weight

in a simulation environment. The simulation results reveal that utilizing the QAoI-

Aware Max-Weight policy in the QAoI domain gives notable results. Although the

assumptions that we use regarding the system model was very restrictive at this early

work, our results show that the method we use can perform well.

In future studies, our primary aim is to examine different semantic metrics beyond

AoI. To this end, we want to deepen our preliminary work on another semantic metric,

QAoI. With the help of the QAoI perspective, we want to study pull-based scenarios

in more detail. Moreover, in further studies, we aim to modify our SDR testbed to

examine the QAoI metric in real wireless networks. As far as we know, the studies

conducted so far on the QAoI concept do not cover multiuser scenarios and do not

include realization studies. We think that the studies we plan to do for the QAoI

metric would be innovative and literature-enhancing.
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